Technical Data

### Fe Plus 130

The Fe Plus range has been formulated in order to meet the high quality demands in high speed duplication and for blank loading as well. Fe Plus 130 provides a playing time of up to 130 minutes in a Compact Cassette, making it the ideal tape for all kinds of

- music and voice recording,
- blank loading of C-130s

and for

- loading of Mini and Micro Cassettes.

The tapes continue to uphold our manufacturing tradition of combining good quality performance and consistency.



Audio Duplication



## Technical Data

#### . .

# Ferro Plus 130

(01) 05/06

| 1. Test Condi                          | tions                                                                       |                      |                                  | see  |
|----------------------------------------|-----------------------------------------------------------------------------|----------------------|----------------------------------|------|
| Environmental condit                   | tions                                                                       |                      | 20±5°C, 60±15% r.h               | note |
| Tape speed<br>Recording head           | IEC Reference Head                                                          | Gap length           |                                  | 1.1  |
| Playback head<br>Calibration tape      | IEC Reference Head<br>According to IEC Publication 94, part 2               | Track width          | 0,6 mm<br>120 + 3180 µs          | 1.2  |
| Reference level                        | According to the rubication 94, part 2                                      |                      | 250 nWb/m                        | 1.2  |
| Reference tape                         |                                                                             |                      | Batch R 723 DG (BASF)            |      |
| Bias definition                        | IEC I reference bias                                                        | 0,0 dB               | = MOL $=$ +4,3 dB <sub>250</sub> | 1.4  |
| Bias setting                           | IEC I reference bias                                                        | 0,0 dB               | 0,0                              | 1.5  |
|                                        | Recommended bias                                                            | -3,0 dB              | $\Delta S_{6,3}$ 1,5 dB          | 1.5  |
|                                        | Performance Specifications                                                  |                      |                                  |      |
|                                        | presents the main parameters both in the I                                  |                      | -                                |      |
| Bias setting                           |                                                                             | 0,0 dB               | - 3,0 dB                         |      |
| MOL <sub>315</sub>                     | Maximum output level at 315 Hz                                              | 0,0 dB               |                                  | 2.1  |
| SOL <sub>10k</sub>                     | Saturation output level at 10 kHz                                           | - 6,5 dB             | - 2,0 dB                         | 2.2  |
| S <sub>315</sub>                       | Relative tape sensitivity at 315 Hz                                         | - 3,0 dB             | - 0,5 dB                         |      |
| -                                      | Max. deviations from batch to batch                                         |                      | ± 0.5 dB                         |      |
| S <sub>3,15k</sub>                     | Relative tape sensitivity at 3,15 kHz                                       | - 1,0 dB             | 0,0 dB                           | 2.2  |
| S <sub>6,3k</sub><br>S <sub>10k</sub>  | Relative tape sensitivity at 6.3 kHz<br>Relative tape sensitivity at 10 kHz | - 0,5 dB<br>- 0,3 dB | 0,6 dB<br>0,8 dB                 | 2.3  |
| <b>J</b> <sub>10k</sub>                | Max. deviations from batch to batch                                         | - 0,5 0D             | ± 1,0 dB                         |      |
| S <sub>14k</sub>                       | Relative tape sensitivity at 14 kHz                                         | 0,0 dB               | 1,0 dB                           |      |
| THD <sub>250</sub>                     | Third harmonic distortion ratio at 250 nWb/m                                | 3,0 %                | 3,0 %                            | 2.4  |
| BNIEC                                  | Bias noise level (A-curve, RMS)                                             |                      | - 55,0 dB                        | 2.5  |
| MOL <sub>315</sub> / BN <sub>IEC</sub> | Signal to bias noise ratio at 315 Hz                                        |                      | 55,0 dB                          | 2.6  |
| SOL <sub>10k</sub> / BN <sub>IEC</sub> | Signal to bias noise ratio at 10 kHz                                        | 48,5 dB              | 53,0 dB                          | 2.7  |
| Р                                      | Print through                                                               |                      | 57,0 dB                          | 2.8  |
| 3. Magnetic P                          | Properties                                                                  |                      |                                  |      |
| H <sub>c</sub>                         | Coercivity                                                                  | 30 kA/m              |                                  | 3.1  |
| B <sub>RS</sub>                        | Saturation retentivity                                                      | 165 mT               | 1650 G<br>50 mM/mm               | 3.2  |
| $\Phi_{	extsf{RS}}$                    | Remanent saturation flux                                                    | 500 nWb/m            | 50 mivi/mm                       | 3.3  |
| 4. Physical Pi                         | roperties                                                                   |                      |                                  |      |
| Base material<br>Tape width            |                                                                             |                      | Polyester<br>3.81 mm             |      |
| Tolerances of tape width               |                                                                             | +0,00 / -0,05 mm     |                                  |      |
| Coating thickness                      |                                                                             | . 0,00               | 2,8 µm                           | 4.1  |
| Total thickness                        |                                                                             |                      | 8,7 µm                           | 4.1  |
| Yield strength (F3)                    |                                                                             |                      | ≥3,7 N                           | 4.2  |
| Breaking strength                      |                                                                             |                      | ≥8,0 N                           | 4.3  |
| Electrical resistanc                   | e of magnetic coating                                                       |                      | $\leq$ 4 G $\Omega$              |      |
| 5. Pancake                             |                                                                             |                      |                                  |      |
| Tana langth                            |                                                                             | 4 575                | 1E 000 ft                        |      |

| Tape length          | 4.575 m | 15.000 ft |
|----------------------|---------|-----------|
| Pancake diameter     | 255 mm  | 10,0 in   |
| Colour hub / end tab | Green   | Blue      |

All data represent nominal values and are subject to change without prior notice due to technical progress. Weights and dimensions are given as approximate values.

### Technical Data

#### 6. Notes

The data in this publication are based on test methods of IEC Publication 94, part 4 and 5.

**1.1** Measurement method according to IEC 94, using the IEC Reference Heads.

**1.2 Playback equalization** on the tape testing equipment is aligned to provide a flat frequency response of the output voltage when playing back the frequency response section of the IEC I Calibration Tape 4,76 cm/s, time constants  $120+3180 \ \mu s$ 

**1.3 The reference level** 250nWb/m corresponds to the reference level section of the IEC I Calibration Tape.

**1.4 IEC I reference bias definition:** Using the IEC Reference Heads and the IEC I Reference Tape, the reference bias is defined as that bias, at which the maximum output level at 315 Hz and 3 % third harmonic distortion ( $MOL_{315}$ ) equals 4,3 dB relative to reference level (Ref. 1.3).

**1.5 Bias setting** by means of a recommended sensitivity drop is common practice. Setting the recording level to about 20 dB below reference level (using a signal frequency of 6,3 kHz) the bias current is raised to such an extent that the playback level is reduced to the given value relative to maximum sensitivity.

**2.1 MOL<sub>315</sub>**: Maximum output level at 315 Hz relative to reference level (Ref. 1.3), characterized by a third harmonic distortion of 3 %.

**2.2 SOL<sub>10k</sub>**: Output level at 10 kHz, at which saturation occurs, relative to reference level (Ref. 1.3).

**2.3 S**<sub>315</sub>, **S**<sub>3,15k</sub>, **S**<sub>6,3k</sub>, **S**<sub>10k</sub>, **S**<sub>14k</sub>: Relative tape sensitivities are compared to those of the reference tape. All sensitivities are measured with an audio current, which at 315 Hz produces an

#### Ferro Plus 130

output of about 20 dB below reference level (Ref. 1.3).

**2.4 THD<sub>250</sub>:** Third harmonic distortion ratio of a 315 Hz signal at reference level (Ref. 1.3).

**2.5 BN<sub>IEC</sub>:** The bias noise level is measured after operational erasure and biasing have been applied. Measurement of BN<sub>IEC</sub> is made using an RMS meter and a weighting network according to curve "A" of IEC Publication 651.

**2.6** MOL<sub>315</sub> / BN<sub>IEC</sub>: The signal to bias noise ratio results from the addition of the maximum output level at 315 Hz (Ref. 2.1) and the bias noise level  $BN_{IEC}$  (Ref. 2.5).

**2.7** SOL<sub>10k</sub> / BN<sub>IEC</sub>: The signal to bias noise ratio results from the addition of the saturation output level at 10 kHz (Ref. 2.2) and the bias noise level (Ref. 2.5).

**2.8 P:** Print through is the highest signal level transferred from a reference level recording to an adjacent tape layer after 24 h storage at 20<sup>o</sup>C.

**2.9 H**<sub>c</sub>: Coercivity is that strength of a magnetic field under whose influence the magnetization of a tape is reduced to zero after the sample has been magnetised to saturation.

**3.1**  $B_{RS}$ : Saturation retentivity specifies the remanent magnetic flux, after the tape has been subjected to saturation magnetisation.

**3.2**  $\Phi_{RS}$ : Remanent saturation flux is the retentivity multiplied by the coating thickness.

3.3 Thickness: Values given are mean values.

**4.2 Yield strength (F3)** is defined according to IEC Publication 735 as that force which is necessary to stretch the tape by 3 %.Breaking tensile strength is the force to get the breaking point of a tape sample, according to IEC Publication 735

#### **Recordable Media Group International B.V.**

P.O. Box 137 4900 AC Oosterhout The Netherlands

Telephone:+ 31-(0)162-40 89 50Fax:+ 31-(0)162-46 26 11

e-mail info@rmgi.nl Internet <u>www.rmgi.nl</u>

