Signetics

LINEAR INTEGRATED CIRCUITS

DESCRIPTION

The Signetics NE501 is a direct-coupled broad-band amplifier fabricated within a monolithic silicon substrate by planar and epitaxial techniques. Typical applications include video amplifiers.

Application flexibility is provided by several external pin connections which adjust the amplifier characteristics to individual needs.

FEATURES

- ADJUSTABLE GAIN AND IMPEDANCE CHARACTERISTICS
- UNITY GAIN FREQUENCY 150 MHz
- NOISE FIGURE 5.0dB
- POWER DISSIPATION 20mW

ABSOLUTE MAXIMUM RATINGS

Voltage Applied V _{G,H,E}	C	+8.0V			
Voltage Applied V _B	.,0	±3.0V			
Voltage Applied VK.D		+4.0V			
Current Rating IF J		±30mA			
Storage Temperature		-65°C to +150°C			
Operating Temperature	NE501	0°C to +70°C			
	SE501	-55°C to +125°C			

CIRCUIT SCHEMATIC

PIN CONFIGURATIONS

G PACKAGE

ORDER PART NOS. SE501G/NE501G

- Ground
- 2. Output 3
- 3. Input 2
- 4. Output 2
- 5. V⁺
- 6. Buffer output
- 7. Buffer input
- 8. Output 1
- 9. Feedback adjust
- 10. Input 1

K PACKAGE

ORDER PART NOS. SE501K/NE501K

- 1. Ground
- 2. Output 3
- 3. Input 2
- 4. Output 2
- 5. V⁺
- 6. Buffer output
- 7. Buffer input
- 8. Output 1
- 9. Feedback adjust
- 10. Input 1

ELECTRICAL CHARACTERISTICS

PARAMETER	TEST CONDITIONS	NE501			SE501			J
		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Voltage Gain	f = 50 kHz; Notes 1, 2, 6	22.5	24	26.5	23	24	26	dB
Bandwidth (-3dB)	Notes 1, 2, 6	11			14			MHz
Unity Gain Frequency	A _{Vo} = 0dB; Notes 2, 6	100	150		100	150		MHz
Voltage Gain Stability	$f = 50 \text{ kHz; } T = 0^{\circ}\text{C; Notes 2, 6}$	-1.0			ļ			dB
	f = 50 kHz; T = +70°C; Notes 2, 6			+0.6	İ	l		dB
	$f = 50 \text{ kHz; } T = -55^{\circ}\text{C; Notes 2, 6}$				-1.0			dB
	f = 50 kHz; T = +125°C; Notes 2, 6						+0.6	dB
Output Voltage	Notes 1, 2, 6, 9	0.71	1.0		0.71	1.0		VRMS
Input Impedance	Notes 1, 6; f = 50 kHz; V _J = V _K	470		1200	540		1100	Ω
Output Impedance	Notes 1, 2; f = 50 kHz; V _D = AC ground		12	18		12	18	Ω
Output Impedance	Notes 1, 5; f = 50 kHz; V _D = AC ground		-25	65	100	25	50	Ω
Power Dissipation				24			21	mW
Power Dissipation	v _K = v _J			60			53	mW
Pulse Response				-	0 2			
Delay Time	Notes 2, 6, 7			15			15	ns
Rise Time	Notes 2, 6, 7		12	20	0	12	16	ns
Noise Figure	$f = 100 \text{ kHz; BW} = 100 \text{ Hz; Z}_s = 500\Omega$		5.0	8.0				dB
	$f_c = 100 \text{ kHz}, BW = 100 \text{ Hz}; Z_s = 500\Omega,$					5.0	7.0	dB
	v _J = v _K							

(Notes: 3, 4, 5, 8) Standard Conditions: $V_E = +6.0V$, $V_A = 0V$, $V_G = V_B$, $T = +25^{\circ}C$ (except as noted) NOTES:

- 1. Variations in this parameter depend on optional alternate connections as indicated in accompanying curves.
- 2. Measured at Pin F, with Pins J and K connected.
- Pins not specifically referenced are left electrically open. All voltages are referenced to Pin A. Letter subscripts denote pins on circuit schematic.
- 4. Positive current flow is defined as into the terminal referenced.
- 5. Measured at Pin J.

- 6. Load Resistance = 600Ω , capacitively coupled.
- 7. Delay time is defined as the time interval between the 50% points of ${\bf e_p}$ and ${\bf e_F}$. Rise time = 20% to 80% points of ${\bf e_F}$. Input Pulse Characteristics: Amplitude = 25mV; PW = 100ns.
- See Signetics SURE Program Bulletin No. 5001 for definition of Acceptance test Sub-Groups. Sub-Group A-7 is used for the electrical end points for Linear Products.
- 9. Total harmonic distortion less than 5% at e_0 = 0.71 V_{RMS}