

54154/DM54154/DM74154 4-Line to 16-Line Decoders/Demultiplexers

General Description

Each or these 4-line-to-16-line decoders utilizes TTL circuitry to decode four binary-coded inputs into one of sixteen mutually exclusive outputs when both the strobe inputs, G1 and G2, are low. The demultiplexing function is performed by using the 4 input lines to address the output line, passing data from one of the strobe inputs with the other strobe input low. When either strobe input is high, all outputs are high. These demultiplexers are ideally suited for implementing high-performance memory decoders. All inputs are buffered and input clamping diodes are provided to minimize transmission-line effects and thereby simplify system design.

Features

- Decodes 4 binary-coded inputs into one of 16 mutually exclusive outputs
- Performs the demultiplexing function by distributing data from one input line to any one of 16 outputs
- Input clamping diodes simplify system design
- High fan-out, low-impedance, totem-pole outputs
- Typical propagation delay
 3 levels of logic 19 ns
 Strobe 18 ns
- Typical power dissipation 170 mW
- Alternate Military/Aerospace device (54154) is available. Contact a National Semiconductor Sales Office/ Distributor for specifications.

©1995 National Semiconductor Corporation TL/F/6548

RRD-B30M105/Printed in U. S. A.

June 1989

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	5.5V
Operating Free Air Temperature Range	
DM54 and 54	-55°C to +125°C
DM74	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54154			DM74154			Units
cy		Min	Nom	Max	Min	Nom	Max	
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.8			0.8	V
IOH	High Level Output Current			-0.8			-0.8	mA
IOL	Low Level Output Current			16			16	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Мах	Units
VI	Input Clamp Voltage	$V_{CC} = Min$, $I_I = -12 \text{ mA}$				-1.5	V
V _{OH}	High Level Output Voltage	$\label{eq:V_CC} \begin{array}{l} V_{CC} = Min, \ I_{OH} = Max \\ V_{IL} = Max, \ V_{IH} = Min \end{array}$		2.4	3.2		V
V _{OL}	Low Level Output Voltage	$\label{eq:V_CC} \begin{array}{l} V_{CC} = Min, I_{OL} = Max \\ V_{IH} = Min, V_{IL} = Max \end{array}$			0.25	0.4	V
l _l	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 5.5V$				1	mA
IIH	High Level Input Current	$V_{CC} = Max, V_1 = 2.4V$				40	μΑ
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-1.6	mA
los		V _{CC} = Max (Note 2)	DM54	-20		-55	mA
			DM74	-18		-57	
Icc	Supply Current	V _{CC} = Max	DM54		34	49	mA
	((Note 3) DM74			34	56	

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 2: Not more than one output should be shorted at a time.

Note 3: $I_{\mbox{CC}}$ is measured with all outputs open and all inputs grounded.

Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input)	$R_L = 400\Omega$,	Units	
Cymbol		To (Output)	Min	Max	
t _{PLH}	Propagation Delay Time Low to High Level Output	Data to Output		36	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Data to Output		33	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	Strobe to Output		30	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Strobe to Output		27	ns

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications