CONNECTION DIAGRAM PINOUT A

14 Vcc

12 Q3

11 P3

10 P1

9 Q1

8 CP0

PL 1

Q2 2

P2 3

P0 4

Q0 5

CP1 6

54/74177 PRESETTABLE BINARY COUNTER

DESCRIPTION — The'177 is a presettable modulo-16 ripple counter partitioned into divide-by-two and divide-by-eight sections, with a separate clock input for each section. In the counting mode, state changes are initiated by the falling edge of the clock. A LOW signal on the Master Reset (\overline{MR}) input overrides all other inputs and forces the outputs LOW. A LOW signal on the Parallel Load (\overline{PL}) input overrides the clocks and causes the Q outputs to assume the state of their respective Parallel Data (P_n) inputs. For detail specifications, please refer to the '176 data sheet.

ORDERING CODE: See Section 9

PKGS	PIN OUT	COMMERCIAL GRADE	MILITARY GRADE	PKG TYPE
		$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	
Plastic DIP (P)	A	74177PC		9A
Ceramic DIP (D)	A	74177DC	54177DM	6A
Flatpak (F)	A	74177FC	54177FM	31

LOGIC SYMBOL

V_{CC} = Pin 14 GND = Pin 7

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

DESCRIPTION	54/74 (U.L.) HIGH/LOW 2.0/3.0	
÷2 Section Clock Input (Active Falling Edge)		
÷8 Section Clock Input (Active Falling Edge)	2.0/2.0	
Asynchronous Master Reset Input (Active LOW)	2.0/2.0	
Parallel Data Inputs	1.0/1.0	
Asynchronous Parallel Load Input (Active LOW)	1.0/1.0	
Flip-flop Outputs*	20/10	
	÷2 Section Clock Input (Active Falling Edge) ÷8 Section Clock Input (Active Falling Edge) Asynchronous Master Reset Input (Active LOW) Parallel Data Inputs Asynchronous Parallel Load Input (Active LOW)	

*Q0 is guaranteed to drive $\overline{\mathsf{CP}}_1$ in addition to the full rated load.

FUNCTIONAL DESCRIPTION—The '177 is an asynchronously presettable binary ripple counter partitioned into divide-by-two and divide-by-eight sections. In the counting modes, state changes are initiated by the HIGH-to-LOW transition of the clock signals. State changes of the Q outputs, however, do not occur simultaneously because of the internal ripple delays. When using external logic to decode the Q_n outputs, designers should bear in mind that the unequal delays can lead to decoding spikes and thus a decoded signal should not be used as a clock or strobe. The \overline{CP}_0 input serves the Q_0 flip-flop while the \overline{CP}_1 input serves the divide-by-eight section. The Q_0 output is designed and specified to drive the rated fan-out plus the \overline{CP}_1 input. With the input frequency connected to \overline{CP}_0 and with Q_0 driving \overline{CP}_1 , the '177 forms a straightforward modulo-16 counter, with Q_0 the least significant output and Q_3 the most significant output.

The '177 has an asynchronous active LOW Master Reset input (\overline{MR}) which overrides all other inputs and forces all outputs LOW. The counters are also asynchronously presettable. A LOW on the Parallel Load input (\overline{PL}) overrides the clock inputs and loads the data from Parallel Data ($P_0 - P_3$) inputs into the flip-flops. While \overline{PL} is LOW, the counters act as transparent latches and any change in the P_n inputs will be reflected in the outputs.

MODE SELECT TABLE

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

STATE DIAGRAM

LOGIC DIAGRAM

