

RRD-B30M105/Printed in U. S. A.

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	5.5V
Operating Free Air Temperature	
Range	-55°C to +125°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual operation.

Recommended Operating Conditions

Symbol	Parameter	54298			Units
Symbol		Min	Nom	Max	
V _{CC}	Supply Voltage	4.5	5	5.5	V
VIH	High Level Input Voltage	2			V
VIL	Low Level Input Voltage			0.8	V
I _{OH}	High Level Output Current			-0.8	mA
I _{OL}	Low Level Output Current			16	mA
T _A	Free Air Operating Temperature	-55		125	°C
t _s (H) t _s (L)	Setup Time HIGH or LOW S to CP	25 25			ns
t _h (H) t _h (L)	Hold Time HIGH or LOW S to CP	0			ns
t _s (H) t _s (L)	Setup Time HIGH or LOW I_{0x} or I_{1x} to \overline{CP}	15 15		-	ns
t _h (H) t _h (L)	Hold Time HIGH or LOW I_{0x} or I_{1x} to \overline{CP}	5.0 5.0			ns
t _w (H) t _w (L)	CP Pulse Width HIGH or LOW	20 20			ns

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Мах	Units
VI	Input Clamp Voltage	$V_{CC} = Min$, I _I = -12 mA			-1.5	V
V _{OH}	High Level Output Voltage	$\label{eq:VCC} \begin{array}{l} V_{CC} = \mbox{Min}, \mbox{I}_{OH} = \mbox{Max}, \\ V_{IL} = \mbox{Max}, \mbox{V}_{IH} = \mbox{Min} \end{array}$	2.4			V
V _{OL}	Low Level Output Voltage	$\label{eq:V_CC} \begin{split} V_{CC} &= \text{Min, I}_{OL} = \text{Max,} \\ V_{IH} &= \text{Min, V}_{IL} = \text{Max} \end{split}$			0.4	V
l _l	Input Current @ Max Input Voltage	$V_{CC} = Max, V_1 = 5.5V$			1	mA
IIH	High Level Input Current	$V_{CC} = Max, V_1 = 2.4V$			40	μΑ
IIL	Low Level Input Current	$V_{CC} = Max, V_{I} = 0.4V$			-1.6	mA
I _{OS}	Short Circuit Output Current	V _{CC} = Max (Note 2)	-20		-57	mA
Icc	Supply Current	V _{CC} = Max (Note 3)			65	mA

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: $I_{\mbox{CC}}$ is measured with all outputs open and all inputs grounded.

Switching Ch	haracteristics $v_{CC} = +5.0V$, $T_A =$	+25°C (See Section	1 for test waveforms a	and output load)
Symbol	Parameter	$C_L = 15 pF$ $R_L = 400 \Omega$		Units
		Min	Max	
t _{PLH} t _{PHL}	Propagation Delay, \overline{CP} to Q_n		27 32	ns

Functional Description

This device is a high speed quad 2-port register. It selects four bits of data from two sources (ports) under the control of a Common Select input (S). The selected data is transferred to the 4-bit output register synchronous with the HIGH-to-LOW transition of the Clock input (\overline{CP}). The 4-bit output register is fully edge-triggered. The Data inputs (I_{nx}) and Select input (S) need be stable only one setup time prior to the HIGH-to-LOW transition of the clock for predictable operation.

Truth Table

Inputs			Output
S	I _{0x}	I _{1x}	Q _x
I	I	Х	L
I.	h	Х	н
h	Х	I	L
h	Х	h	Н

I = LOW Voltage Level one setup time prior to the HIGH-to-LOWclock

transition. h = HIGH Voltage Level one setup time prior to the HIGH-to-LOW clock $\begin{array}{l} \text{transition.} \\ \text{H} = \text{HIGH Voltage level} \\ \text{L} = \text{LOW Voltage level} \end{array}$

X = Immaterial

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.