

54FCT/74FCT241A **Octal Buffer/Line Driver with TRI-STATE® Outputs**

General Description

The 'FCT241A is an octal buffer and line driver designed to be employed as a memory address driver, clock driver and bus-oriented transmitter or receiver which provides improved PC board density.

Features

- NSC 54/74FCT241A is pin and functionally equivalent to IDT 54/74FCT241A
- Non-inverting TRI-STATE outputs drive bus lines or buffer memory address registers
- 'FCT241A has TTL-compatible inputs
- Military product compliant to MIL-STD-883C
- Inherently radiation tolerant
- I_{OL} = 64 mA (Comm) and 48 mA (Mil)
- TTL input and output level compatible
- High current latch up

Ordering Code: See Section 8

Logic Symbol

Pin Names	Description
OE ₁ ,	TRI-STATE Output Enable Input
OE ₂	TRI-STATE Output Enable Input (Active HIGH)
I ₀ -I ₇	Inputs
O ₀ -O ₇	Outputs

Truth Tables

Inpu	its	Outputs
OE1	D	(Pins 12, 14, 16, 18)
L	L	L
L	н	Н
н	Х	Z

Inpu	its	Outputs
OE2	D	(Pins 3, 5, 7, 9)
н	L	L
н	н	н
L L	x	Z

H = HIGH Voltage Level

- L = LOW Voltage Level
- X = Immaterial
- Z = High Impedance

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required. please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Terminal Voltage with Respect to GND (VTERM) 74ECTA -0.5V to 7.0V

	0.54 10 7.04
54FCTA	-0.5V to 7.0V
Temperature under Bias (T _{BIAS})	
74FCTA	-55°C to +125°C
54FCTA	-65°C to +135°C
Storage Temperature (T _{STG})	
74FCTA	55°C to +125°C
54FCTA	-65°C to +150°C
Power Dissipation (PT)	0.5W
DC Output Current (I _{OUT})	120 mA

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACTTM FCT circuits outside databook specifications.

Recommended Operating Conditions

Supply Voltage (V _{CC})	
54FCTA	4.5V to 5.5V
74FCTA	4.75V to 5.25V
Input Voltage	0V to V _{CC}
Output Voltage	0V to V _{CC}
Operating Temperature (T _A)	
54FCTA	-55°C to +125°C
74FCTA	-0°C to +70°C
Junction Temperature (TJ)	
CDIP	175°C
PDIP	140°C

DC Characteristics for 'FCTA Family Devices Typical values are at $V_{CC} = 5.0V$, 25°C ambient and maximum loading. For test conditons shown as Max, use the value specified for the appropriate device type: Com: $V_{CC} = 5.0V \pm 5\%$, $T_A = 0$ °C to +70°C; Mil: $V_{CC} = 5.0V \pm 10\%$, $T_A = -55$ °C to + 125°C, $V_{HC} = V_{CC} - 0.2V$

Symbol	Parameter	54FCTA/74FCTA			Units	Conditions		
Symbol	Falameter	Min	Тур	Max	Units	Conditions		
VIH	Minimum High Level Input Voltage	2.0			v			
VIL	Maximum Low Level Input Voltage			0.8	v			
Чн	Input High Current			5.0 5.0	μΑ	V _{CC} = Max	$V_I = V_{CC}$ $V_I = 2.7V$ (Note 2)	
łι∟	Input Low Current			-5.0 -5.0	μΑ	V _{CC} = Max	$V_I = 0.5V$ (Note 2) $V_I = GND$	
loz	Maximum TRI-STATE Current			10.0 10.0 - 10.0 - 10.0	μΑ	V _{CC} = Max	$V_{O} = V_{CC}$ $V_{O} = 2.7V \text{ (Note 2)}$ $V_{O} = 0.5V \text{ (Note 2)}$ $V_{O} = GND$	
VIK	Clamp Diode Voltage		-0.7	-1.2	v	$V_{CC} = Min; I_N = -18 \text{ mA}$		
los	Short Circuit Current	-60	-120	_	mA	V _{CC} = Max (Note 1); V _O = GND		
V _{OH}	Minimum High Level Output Voltage	2.8 V _{HC} 2.4 2.4	3.0 V _{CC} 4.3 4.3		v	V _{CC} = Min	$\frac{2 \text{V or V}_{\text{HC}}; \text{I}_{\text{OH}} = -32 \mu\text{A}}{\text{I}_{\text{OH}} = -300 \mu\text{A}}$ $\frac{1}{\text{OH}} = -12 \text{mA} (\text{Mil})$ $\frac{1}{\text{OH}} = -15 \text{mA} (\text{Com})$	
V _{OL}	Maximum Low Level Output Voltage		GND GND 0.3 0.3	0.2 0.2 0.55 0.55	v	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
lcc	Maximum Quiescent Supply Current		0.001	1.5	mA	$\begin{split} & V_{CC} = Max \\ & V_{IN} \geq V_{HC}, V_{IN} \leq 0. \\ & \mathfrak{f}_I = 0 \end{split}$	2V	
ΔI _{CC}	Quiescent Supply Current; TTL Inputs HIGH		0.5	2.0	mA	V _{CC} = Max V _{IN} = 3.4V (Note 3)		

DC Characteristics for 'FCTA Family Devices (Continued)

Typical values are at V_{CC} = 5.0V, 25°C ambient and maximum loading. For test conditons shown as Max, use the value specified for the appropriate device type: Com: V_{CC} = 5.0V \pm 5%, T_A = 0°C to +70°C; Mil: V_{CC} = 5.0V \pm 10%, T_A = -55°C to +125°C, V_{HC} = V_{CC} - 0.2V

Symbol	Parameter	54FCTA/74FCTA		Units	Conditions		
Symbol	Lai anialai	Min	Тур	Max	Units	Conditions	
ICCD	Dynamic Power Supply Current (Note 4)		0.25	0.40	mA/MHz	$\begin{array}{l} V_{CC} = Max \\ Outputs Open \\ \overline{OE}_A = \overline{OE}_B = GND \\ One Input Toggling \\ 50\% Duty Cycle \end{array}$	$V_{IN} \ge V_{HC}$ $V_{IN} \le 0.2V$
lc	Total Power Supply Current (Note 6)		1.5	4.5		$V_{CC} = Max$ Outputs Open $\overline{OE}_A = \overline{OE}_B = GND$	$V_{IN} \ge V_{HC}$ $V_{IN} \le 0.2V$
			1.8	5.0	mA	f _I = 10 MHz One Bit Toggling 50% Duty Cycle	$V_{IN} = 3.4V$ $V_{IN} = GND$
			3.0	8.0		(Note 5) $V_{CC} = Max$ Outputs Open $\overline{OE}_A = \overline{OE}_B = GND$	V _{IN} ≥ V _{HC} V _{IN} ≤ 0.2V
			5.0	14.5		f _l = 2.5 MHz Eight Bits Toggling 50% Duty Cycle	$V_{IN} = 3.4V$ $V_{IN} = GND$
V _H	Input Hysteresis on Clock Only		200		mV		Ŧ

Note 1: Maximum test duration not to exceed one second, not more than one output shorted at one time.

Note 2: This parameter guaranteed but not tested.

241A

Note 3: Per TTL driven input ($V_{IN} = 3.4V$); all other inputs at V_{CC} or GND.

Note 4: This parameter is not directly testable, but is derived for use in Total Power Supply calculations.

Note 5: Values for these conditions are examples of the I_{CC} formula. These limits are guaranteed but not tested.

Note 6: $I_C = I_{QUIESCENT} + I_{INPUTS} + I_{DYNAMIC}$ $I_C = I_{CC} + \Delta I_{CC} D_H N_T + I_{CCD} (I_{CP}/2 + I_1 N_1)$

I_{CC} = Quiescent Current

 ΔI_{CC} = Power Supply Current for a TTL High Input (V_{IN} = 3.4V)

D_H = Duty Cycle for TTL Inputs High

NT = Number of Inputs at DH

ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

f_{CP} = Clock Frequency for Register Devices (Zero for Non-Register Devices)

f = Input Frequency

N_I = Number of Inputs at f_I

All currents are in milliamps and all frequencies are in megahertz.

7-10

AC EI	ectrical Charac	cteristics: See S	Section 2 for Wave	eforms				
		54FCTA/74FCTA	74FCT	A	54FCT/	4		
Symbol Parameter		T _A = +25°C V _{CC} = 5.0V	$\begin{array}{l} T_{A}, V_{CC} = Com \\ R_{L} = 500\Omega \\ C_{L} = 50pF \end{array}$		$T_{A}, V_{CC} = Mil$ $R_{L} = 500\Omega$ $C_{L} = 50 pF$		Units	Flg. No.
		Тур	Min (Note 1)	Max	Min (Note 1)	Max		
t _{PLH} t _{PHL}	Propagation Delay D _n to O _n	3.0	1.5	4.8			ns	2-8
tpzh tpzL	Output Enable Time	4.0	1.5	6.2		-	ns	2-10
t _{PHZ} t _{PLZ}	Output Disable Time	3.0	1.5	5.6			ns	2-10

241A

Note 1: Minimum limits are guaranteed but not tested on propagation delays.

Capacitance (T_A = +25°C, f = 1.0 MHz)

•

Symbol	Parameter (Note)	Тур	Max	Units	Conditions
C _{IN}	Input Capacitance	6	10	рF	$V_{IN} = 0V$
COUT	Output Capacitance	8	12	рF	V _{OUT} = 0V

Note: This parameter is measured at characterization but not tested.

7-11