

573A

54FCT/74FCT573A Octal Latch with TRI-STATE® Outputs

General Description

The 'FCT573A is a high-speed octal latch with buffered common Latch Enable (LE) and buffered common Output Enable (\overline{OE}) inputs.

The 'FCT573A is functionally identical to the 'FCT373A but has inputs and outputs on opposite sides.

Features

- NSC 54/74FCT573A is pin and functionally equivalent to IDT 54/74FCT573A
- Inputs and outputs on opposite sides of package allowing easy interface with microprocessors
- Useful as input or output port for microprocessors
- I_{OL} = 48 mA (Com), 32 mA (Mil)
- TRI-STATE outputs for bus interfacing
- Military product compliant to MIL-STD-883
- TTL input and output level compatible
- TTL inputs accept CMOS levels

Ordering Code: See Section 8

Logic Symbols

Pin Assignment for DIP, Flatpak and SOIC

Connection Diagrams

Pin Names	Description
D0-D7	Data Inputs
LE	Latch Enable Input
ŌĒ	TRI-STATE Output Enable Input
O ₀ -O ₇	TRI-STATE Latch Outputs

Functional Description

The FCT573A contains eight D-type latches with TRI-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, and the latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The TRI-STATE buffers are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the latch contents are presented inverted at the outputs $\overline{O_7}-\overline{O_0}$. When \overline{OE} is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagram

Truth Table

	Inputs					
ŌĒ	LE	D	On			
L	н	н	н			
L	н	L	L			
L	L	X	O ₀			
н	Х	Х	Z			

H = HIGH Voltage

L = LOW Voltage

Z = High Impedance X = Immaterial

O₀ = Previous O₀ before HIGH-to-LOW transition of Latch Enable

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

573A

Absolute Maximum Rating (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Terminal Voltage with Respect to GND (VTERM)

· · · · · · · · · · · · · · · · · · ·	
54FCTA	-0.5V to +7.0V
74FCTA	-0.5V to +7.0V
Temperature under Bias (TBIAS)	
54FCTA	-65°C to +135°C
74FCTA	-55°C to +125°C
Storage Temperature (T _{STG})	
54FCTA	-65°C to +150°C
74FCTA	-55°C to +125°C
Power Dissipation (PT)	0.5W
DC Ouput Current (I _{OUT})	120 mA

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACTTM FCT circuits outside databook specifications.

Recommended Operating Conditions

Supply Voltage (V _{CC})	
54FCTA	4.5V to 5.5V
74FCTA	4.75V to 5.25V
Input Voltage	0V to V _{CC}
Output Voltage	0V to V _{CC}
Operating Temperature (T _A)	
54FCTA	-55°C to +125°C
74FCTA	0°C to + 70°C
Junction Temperature (TJ)	
CDIP	175°C
PDIP	140°C

DC Characteristics for 'FCTA Family Devices

Typical values are at V_{CC} = 5.0V, 25°C ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: V_{CC} = 5.0V \pm 5%, T_A = 0°C to +70°C; Mil: 5.0V \pm 10%, T_A = -55°C to +125°C, V_{HC} = V_{CC} - 0.2V

Symbol	Parameter	54FCTA/74FCTA			Units	Conditions		
0,11120.		Min	Тур	Max			Conditions	
VIH	Minimum High Level Input Voltage	2.0			v			
VIL	Maximum Low Level Input Voltage			0.8	v			
łι μ	Input High Current			5.0 5.0	μΑ	V _{CC} = Max	$V_{I} = V_{CC}$ $V_{I} = 2.7V \text{ (Note 2)}$	
lir I	Input Low Current			-5.0 -5.0	μA	V _{CC} = Max	V _I = 0.5V (Note 2) V _I = GND	
loz	Maximum TRI-STATE Current			10.0 10.0 10.0 10.0	μΑ	V _{CC} = Max	$\begin{array}{l} V_{O} = V_{CC} \\ V_{O} = 2.7V \mbox{ (Note 2)} \\ V_{O} = 0.5V \mbox{ (Note 2)} \\ V_{O} = \mbox{ GND} \end{array}$	
VIK	Clamp Doide Voltage		-0.7	- 1.2	V	$V_{CC} = Min; I_N = -18 \text{ mA}$		
los	Short Circuit Current	-60	- 120		mA	$V_{CC} = Max$ (Note 1); $V_{O} = GND$		
V _{OH}	Minimum High Level Output Voltage	2.8 V _{HC} 2.4 2.4	3.0 V _{CC} 4.3 4.3		v	$\label{eq:VCC} \begin{split} V_{CC} &= 3V; V_{IN} = 0.2V\\ V_{CC} &= Min\\ V_{IN} &= V_{IH} \text{ or } V_{IL} \end{split}$	/ or V _{HC} ; $I_{OH} = -32 \mu A$ $I_{OH} = -300 \mu A$ $I_{OH} = -12 m A (Mil)$ $I_{OH} = -15 m A (Com)$	
V _{OL}	Maximum Low Level Output Voltage		GND GND 0.3 0.3	0.2 0.2 0.50 0.50	v	$\label{eq:VCC} \begin{split} V_{CC} &= 3V; V_{IN} = 0.2V\\ V_{CC} &= Min\\ V_{IN} &= V_{IH} \text{ or } V_{IL} \end{split}$		
lcc	Maximum Quiescent Supply Current		0.001	1.5	mA		1	
ΔI _{CC}	Quiescent Supply Current; TTL Inputs HIGH		0.5	2.0	mA	V _{CC} = Max V _{IN} = 3.4V (Note 3)		
ICCD	Dynamic Power Supply Current (Note 4)		0.25	0.45	mA/MHz	$\begin{array}{l} V_{CC} = Max\\ Outputs Open\\ One Input Toggling\\ 50\% Duty Cycle\\ \overline{OE} = GND\\ LE = V_{CC} \end{array}$	$V_{IN} \ge V_{HC}$ $V_{IN} \le 0.2V$	

DC Characteristics for 'FCTA Family Devices (Continued) Typical values are at $V_{CC} = 5.0V$, 25°C ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $V_{CC} = 5.0V \pm 5\%$, $T_A = 0$ °C to +70°C; Mil: $5.0V \pm 10\%$, $T_A = -55$ °C to $+125^{\circ}C, V_{HC} = V_{CC} - 0.2V$

573A

Symbol Parameter		54FCTA/74FCTA			Units	Conditions		
0,111201		Min	Тур	Max	01110	o o i dallo i o		
IC	Total Power Supply Current (Note 6)		1.5	4.5		V _{CC} = Max Outputs Open OE = GND, LE = V _{CC}	$V_{IN} \ge V_{HC}$ $V_{IN} \le 0.2V$	
			1.8	5.0	mA	f _{CP} = 10 MHz One Bit Toggling 50% Duty Cycle	$V_{IN} = 3.4V$ $V_{IN} = GND$	
			3.0	8.0		(Note 5) $V_{CC} = Max Outputs Open$ $\overline{OE} = GND, LE = V_{CC}$	$V_{IN} \ge V_{HC}$ $V_{IN} \le 0.2V$	
			5.0	14.5		f _{CP} = 2.5 MHz Eight Bits Toggling 50% Duty Cycle	$V_{IN} = 3.4V$ $V_{IN} = GND$	

Note 1: Maximum test duration not to exceed one second, not more than one output shorted at one time.

Note 2: This parameter guaranteed but not tested.

Note 3: Per TTL driven input (VIN = 3.4V); all other inputs at V_{CC} or GND.

Note 4: This parameter is not directly testable, but is derived for use in Total Power Supply calculations.

Note 5: Values for these conditions are examples of the I_{CC} formula. These limits are guaranteed but not tested.

Note 6: IC = IQUIESCENT + INPUTS + IDYNAMIC

 $I_{C} = I_{CC} + \Delta I_{CC} D_{H}N_{T} + I_{CCD} (f_{CP}/2 + f_{I}N_{I})$ $I_{CC} = Quiescent Current$

 ΔI_{CC} = Power Supply Current for a TTL High Input (VIN = 3.4V)

D_H = Duty Cycle for TTL inputs High NT = Number of Inputs at DH

I_{CCD} = Dynamic Current caused by an Input Transition Pair (HLH or LHL)

f_{CP} = Clock Frequency for Register Devices (Zero for Non-Register Devices)

f_L = Input Frequency

N_I = Number of Inputs at f₁

All currents are in milliamps and all frequencies are in megahertz.

AC Electrical Characteristics: See Section 2 for Waveforms

		54/74FCTA	74 F	СТА	54 F	54FCTA		1
Symbol Parameter	$\begin{array}{c} \mathbf{T_A} = +25^\circ\mathbf{C} \\ \mathbf{V_{CC}} = 5.0\mathbf{V} \end{array}$	R _L =	; = Com 500Ω 50 pF	R _L =	c = Mil 500Ω 50 pF	Units	Fig. No.	
		Тур	Min	Max	Min	Max		
^t PLH ^t PHL	Propagation Delay D _n to O _n	4.0	1.5	5.2			ns	2-8
^t PLH ^t PHL	Propagation Delay LE to O _n	7.0	2.0	8.5			ns	2-8
^t PZH ^t PZL	Output Enable Time	5.5	1.5	6.5			ns	2-11
t _{PHZ} t _{PLZ}	Output Disable Time	4.0	1.5	5.5			ns	2-11
ts	Setup Time High or Low, D _n to LE	1.0	2.0				ns	2-10
tн	Hold Time High or Low, D _n to LE	1.0	1.5				ns	2-10
tw	LE Pulse Width High or Low	4.0	5.0				ns	2-9

Note 1: Minimum limits are guaranteed but not tested on propagation delays.

Capacitance ($T_A = \pm 25^{\circ}C, f = 1.0 \text{ MHz}$)

Symbol	Parameter	Тур	Max	Units	Conditions
CIN	Input Capacitance	6	10	рF	$V_{IN} = 0V$
COUT	Output Capacitance	8	10	pF	V _{OUT} = 0V

Note: This parameter is measured at characterization but not tested.