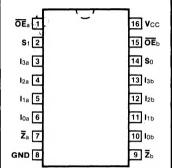
54LS/74LS353

DUAL 4-INPUT MULTIPLEXER

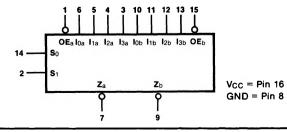
(With 3-State Outputs)


DESCRIPTION — The '353 is a dual 4-input multiplexer with 3-state outputs. It can select two bits of data from four sources using common select inputs. The outputs may be individually switched to a high impedance state with a HIGH on the respective Output (\overline{OE}) inputs, allowing the outputs to interface directly with bus oriented systems. It is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Fairchild TTL families.

- INVERTED VERSION OF 'LS253
- SCHOTTKY PROCESS FOR HIGH SPEED
- MULTIFUNCTION CAPABILITY

ORDERING CODE: See Section 9

	PIN	COMMERCIAL GRADE	MILITARY GRADE	PKG	
PKGS		$V_{CC} = +5.0 \text{ V } \pm 5\%,$ $T_A = 0^{\circ}\text{C to } +70^{\circ}\text{C}$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ}\text{C to} + 125^{\circ}\text{C}$	TYPE	
Plastic DIP (P)	Α	74LS353PC		9B	
Ceramic DIP (D)	Α	74LS353DC	54LS353DM	6B	
Flatpak (F)	А	74LS353FC	54LS353FM	4L	


CONNECTION DIAGRAM PINOUT A

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74LS (U.L.) HIGH/LOW
I _{0a} — I _{3a}	Side A Data Inputs	0.5/0.25
10b — 13b	Side B Data Inputs	0.5./0.25
S ₀ , S ₁	Common Select Inputs	0.5/0.25
S ₀ , S ₁ OE _a	Side A Output Enable Input (Active LOW)	0.5/0.25
OEb	Side B Output Enable Input (Active LOW)	0.5/0.25
\bar{Z}_a, \bar{Z}_b	3-State Outputs (Inverted)	65/15
	·	(25)/(7.5)

LOGIC SYMBOL

FUNCTIONAL DESCRIPTION — The '353 contains two identical 4-input multiplexers with 3-state outputs. They select two bits from four sources selected by common Select inputs (S₀, S₁). The 4-input multiplexers have individual Output Enable $(\overline{OE}_a, \overline{OE}_b)$ inputs which when HIGH, force the outputs to a high impedance (high Z) state. The logic equations for the outputs are shown below:

$$\overline{Z}_{a} = \overline{OE}_{a} \bullet (I_{0a} \bullet \overline{S}_{1} \bullet \overline{S}_{0} + I_{1a} \bullet \overline{S}_{1} \bullet S_{0} + I_{2a} \bullet S_{1} \bullet \overline{S}_{0} + I_{3a} \bullet S_{1} \bullet S_{0})$$

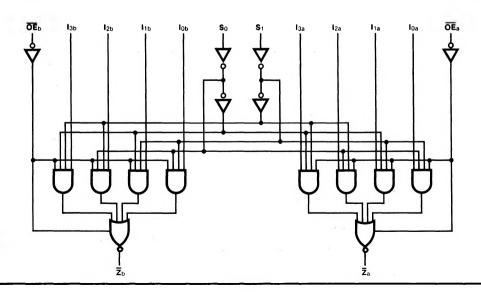
$$\overline{Z}_{b} = \overline{OE}_{b} \bullet (I_{0b} \bullet \overline{S}_{1} \bullet \overline{S}_{0} + I_{1b} \bullet \overline{S}_{1} \bullet S_{0} + I_{2b} \bullet S_{1} \bullet \overline{S}_{0} + I_{3b} \bullet S_{1} \bullet S_{0})$$

If the outputs of 3-state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-state devices whose outputs are tied together are designed so that there is no overlap.

TRUTH TABLE

SELECT INPUTS		DATA INPUTS				OUTPUT ENABLE	ОИТРИТ
S ₀	S ₁	lo	lı	l ₂	lз	E	Z
Х	Х	х	Х	Х	X	Ι	(Z)
L	L	L	Х	Х	Χ	L	Н
L	L	н	Χ	Χ	X	L	L
Н	L	х	L	Х	X	L	н
н	L	x	Н	Х	X	L	L
L	Н	x	Х	L	Χ	L	н
L	Н	х	Х	Н	Χ	L	L
H	Н	x	Х	Х	L	L	н
Н	Н	x	Х	Х	Н	L	L

Address inputs So and S1 are common to both sections.


H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

(Z) = High Impedance

LOGIC DIAGRAM

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		54/74LS		UNITS	CONDITIONS
01202			Min	Max	00	
	Power Supply Current	Outputs HIGH		12	mA	V _{CC} = Max I _n , S _n , OE _n = Gnd
		Outputs OFF		14		$V_{CC} = Max$, $\overline{OE}_n = 4.5 \text{ V}$ I_n , $S_n = Gnd$

AC CHARACTERISTICS: $V_{CC} = +5.0 \text{ V}$, $T_A = +25^{\circ} \text{ C}$ (See Section 3 for waveforms and load configurations)

SYMBOL		54/74LS			
	PARAMETER	C _L =	45 pF	UNITS	CONDITIONS
		Min	Max		
tpLH tpHL	Propagation Delay S_n to \overline{Z}_n		24 32	ns	Figs. 3-1, 3-20
tpLH tpHL	Propagation Delay I_n to \overline{Z}_n		15 15	ns	Figs. 3-1, 3-4
tpzh tpzL	Output Enable Time		18 18	ns	Figs. 3-3, 3-11, 3-12 R _L = 667Ω
tPHZ tPLZ	Output Disable Time		18 18	ns	Figs. 3-3, 3-11, 3-12 R _L = 667Ω, C _L = 5 pF