

DESCRIPTION

The NE561B Phase Locked Loop (PLL) is a monolithic signal conditioner, and demodulator system comprising a VCO, Phase Comparator, Amplifier and Low Pass Filter, interconnected as shown in the accompanying block diagram. The center frequency of the PLL is determined by the free running frequency (f_0) of the VCO. This VCO frequency is set by an external capacitor and can be fine tuned by an optional Potentiometer. The low pass filter, which determines the capture characteristics of the loop is formed by the two capacitors and two resistors at the Phase Comparator output.

The PLL system has a set of self biased inputs which can be utilized in either a differential or single ended mode. The VCO output is available for signal conditioning, frequency synchronization, multiplication and division applications. Terminals are provided for optional external control of the tracking range, VCO frequency, and output DC level. An analog multiplier block is incorporated into the PLL system to provide frequency selective synchronous AM detection capability.

The monolithic signal conditioner-demodulator system is useful over a wide range of frequencies from less than 1 Hz to more than 15 MHz with an adjustable tracking range of $\pm 1\%$ to $\pm 15\%$.

FEATURES

- FM DEMODULATION WITHOUT TUNED CIRCUITS
- SYNCHRONOUS AM DETECTION
- NARROW BAND PASS TO $\pm 1\%$
- EXACT FREQUENCY DUPLICATION IN HIGH NOISE ENVIRONMENT
- ADJUSTABLE TRACKING RANGE
- WIDE TRACKING RANGE ±15%
- HIGH LINEARITY 1% DISTORTION MAX
- FREQUENCY MULTIPLICATION AND DIVISION THROUGH HARMONIC LOCKING

BLOCK DIAGRAM

LINEAR INTEGRATED CIRCUITS

PIN CONFIGURATION

ORDER I ART NO. NESOTO

ABSOLUTE MAXIMUM RATINGS

Maximum Operating Voltage	26V
Input Voltage	1V RMS
Storage Temperature	-65°C to 150°C
Operating Temperature	0°C to 70°C
Power Dissipation	300mW

Limiting values above which serviceability may be imparied

APPLICATIONS TONE DECODERS AM-FM-IF STRIPS TELEMETRY DECODERS DATA SYNCHRONIZERS SIGNAL RECONSTITUTION SIGNAL GENERATORS MODEMS TRACKING FILTERS SCA RECEIVERS FSK RECEIVERS WIDE BAND HIGH LINEARITY DETECTORS SYNCHRONOUS DETECTORS AM RECEIVER

GENERAL ELECTRICAL CHARACTERISTICS

(15K Ω Pin 9 to GND, Input Pin 12 or Pin 13 AC Ground Unused Input, Optional Controls Not Connected, V+ = 18V Unless Otherwise Specified T_A = 25°C)

CHARACTERISTICS	LIMITS				TEST CONDITIONS
CHARACTERISTICS	MIN	TYP	MAX	UNITS	
Lowest Practical Operating Frequency Maximum Operating Frequency Supply Current Minimum Input Signal for Lock Dynamic Range VCO Temp Coefficient* VCO Supply Voltage Regulation Input Resistance Input Capacitance Input DC Level Output DC Level	15 8 +12	$\begin{array}{c} 0.1 \\ 30 \\ 10 \\ 100 \\ 60 \\ \pm 0.06 \\ \pm 0.3 \\ 2 \\ 4 \\ +4 \\ +14 \end{array}$	12 ±0.12 ±2 +16	Hz MHz dB %/∙C %/V kΩ ₽F V V	Measured at 2 MHz, with both inputs AC grounded Measured at 2 MHz
Available Output Swing AM Rejection* De-emphasis Resistance	30	4 40 8		V _{p-p} dB kΩ	Measured at Pin 9 See Figure 3

•ACC Test Sub Group C.

ELECTRICAL CHARACTERISTICS (For FM Applications, Figure 2) (15K Ω Pin 9 to GND, Input Pin 12 or 13,AC Ground Unused Input, Optional Controls Not Connected, V+ = 18V Unless Otherwise Specified T_A = 25°C)

~						
		LI	MITS			
CHARACTERISTICS	MIN	ΤΥΡ	MAX	UNITS	TEST CONDITIONS	
10.7 MHz Operation Deviation 75	kHz Sourc	e Impedan	ce = 50Ω			
Detection Threshold Demodulated Output Amplitude Distortion [#] Signal to Noise Ratio $\frac{S + N}{N}$	30	120 60 .3 35	300 1	μ∨ m∇ % T.H.D. dB	Vin = 1 mv Rms Modulation Frequency 1 kHz Vin = 1 mv Rms Modulation Frequency 1 kHz Vin = 1 mv Rms Modulation Frequency 1 kHz	
4.5 MHz Operation Deviation = 25 kHz, Source Impedance = 50Ω						
Detection Threshold Demodulated Output Amplitude Distortion Signal to Noise Ratio $\frac{S + N}{N}$	30	120 60 0.3 35	300 1.0	μV mV % T.H.D. dB	Vin = 1 mv Rms Modulation Frequency 1 kHz Vin = 1 mv Rms Modulation Frequency 1 kHz Vin = 1 mv Rms Modulation Frequency 1 kHz	
Wide Deviation $\Delta F/f_0 = 5\%$ Input = 4.5 MHz Deviation = 225 kHz @ 1 kHz modulation rate						
Detection Threshold Demodulated Output Distortion Signal to Noise Ratio $\frac{S + N}{N}$	0.2	1 0.5 0.8 50	5	mV Vrms % T.H.D. dB	Vin = 5 mv Rms Vin = 5 mv Rms Vin = 5 mv Rms	

*ACC Test Sub Group C.

ELECTRICAL CHARACTERISTICS (For Tracking Filter, Figure 1) (15K Ω Pin 9 to GND, Input Pin 12 or Pin 13 AC Ground Unused Input, Optional Controls Not Connected, V+ = 18V Unless Otherwise Specified T_A = 25°C)

CHARACTERISTICS		LI	MITS		
	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Tracking Range Minimum Signal to Sustain Lock 0-C to 70 ≪C	±5	±20 0.8		% of f _o mv Rms	Vin 5 mv R ms Input 2 MHz - See Characteristic Curves
VCO Output Impedance VCO Output Swing	0.4	1 0.6		kΩ V _{p-p}	Input 2 MHz Measured with high impedance. Probe with less than 10 pF capacitance.
VCO Output DC Level		+6.5		v i	
Side Band Suppression		35		dB	Input 2 MHz with \pm 100 kHz Sideband Separation and 3 kHz Low Pass Filter. Input 1 mv Peak for Carrier and each Sideband C1 = 0.01 μ F R ₁ = 0

ELECTRICAL CHARACTERISTICS (For AM Synchronous Detector, Figure 4) (15K Ω Pin 9 to GND, Input Pin 12 or Pin 13 AC Ground Unused Input, Optional Controls Not Connected, V+ = 18V Unless Otherwise Specified T_A = 25°C)

CHARACTERISTICS		U	MITS		
	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Impedance		3		kΩ	
Output Impedance		8	}	kΩ	
Output DC Level	+10	+14	+17		
AM Conversion Gain	3	12		dB	See Definition of Terms
Out of Band Rejection		30		dB	See Definition of Terms
Distortion		1.		8 Т.Н.Д.	

TYPICAL TEST CIRCUITS

TYPICAL CHARACTERISTIC CURVES

EXTERNAL CONTROLS

1. Loop Low Pass Filter (Pins 14 and 15)

The equivalent circuit for the loop low-pass filter can be represented as:

where RA (6k Ω) is the effective resistance seen looking into Pin #14 or Pin #15.

The corresponding filter transfer characteristics are:

$$\frac{V_2}{V_1}(S) = F(S) = \frac{1 + SR_1C_1}{1 + S(R_1 + R_A)C_1}$$

where S is the complex frequency variable.

2. Loop Gain (Threshold) Control

The overall Phase Lock of loop gain can be reduced by connecting a feedback resistor, R_F, across the low-pass filter terminals, Pins #14 and #15. This causes the loop gain and the detection sensitivity to decrease by a factor ($\alpha \leq 1$), where

$$\alpha = \frac{R_F}{2R_A + R_F}$$

Reduction of loop gain may be desirable at high input signal levels (V_{in} > 30 mV) and at high frequencies (f_o > 5MHz) where excessively high PLL loop gain may cause instability within the loop.

3. Tracking Range Control (Pin 7)

Any bias current, I_p, injected into the tracking range control, reduces the tracking range of the PLL by decreasing the output of the limiter. The variation of the tracking range and the center frequency, as a function of I_p, are shown in the characteristic curves with I_p defined positive going into the tracking range control terminal. This terminal is normally at a DC level of +0.6 Volts and presents an impedance of 600Ω .

4. External Fine Tuning (Pin 6)

Any bias current injected into the fine tuning terminal increases

the frequency of oscillation, f_0 , as shown in the characteristic curves. This current is defined Positive into the fine tuning terminal. This terminal is at a typical DC level of +1.3 Volts and has a dynamic impedance of 100 Ω to ground.

5. Offset Adjustment (Pin 11)

Application of a bias voltage to the offset adjustment terminal modifies the current in the output amplifier setting the DC level at the output. The effect on the loop is to modify the relationship between the VCO free running frequency and the lock range, allowing the VCO free running frequency to be positioned at different points throughout the lock range.

Nominally this terminal is at +4V DC and has an input impedance of $3k\Omega$. The offset adjustment is optional. The characteristics specified correspond to operation of the circuit with this terminal open circuited.

6. De-emphasis Filter (Pin 10)

The de-emphasis terminal is normally used when the PLL is used to demodulate Frequency Modulated Audio signals. In this application, a capacitor from this terminal to ground provides the required de-emphasis. For other applications, this terminal may be used for band shaping the output signal. The 3 dB bandwidth of the output amplifier in the system block diagram (see Figure 2...) is related to the de-emphasis capacitor, C_D , as:

$$f_{3dB} = \frac{1}{2\pi R_D C_D}$$

where $\,{\rm R}^{}_{\rm D}\,$ is the 8000 ohm resistance seen looking into the deemphasis terminal.

When the PLL system is utilized for signal conditioning, and the loop error voltage is not utilized, de-emphasis terminal should be AC grounded.

7. AM Post-Detection Filter (Pin 1)

The capacitor ${\rm C_{\chi}}$ connected between Pin #1 and ground serves as a low-pass filter for synchronous AM detection with a transfer characteristic, ${\rm F_2(S)}$, given as:

$$F_2(S) = \frac{1}{1 + SR_x C_x}$$

where $R_x = 8k\Omega$ is the resistance seen looking into Pin #1.