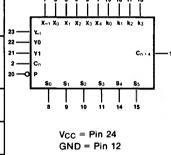

93\$43

4-BIT BY 2-BIT TWOS COMPLEMENT MULTIPLIER


DESCRIPTION — The '43 is a high speed twos complement multiplier. The device is a 4-bit by 2-bit building block that can be connected in an iterative array to perform multiplication of two binary numbers of variable lengths. The device can generate the twos complement product, without correction, of two binary numbers presented in twos complement notation.

- VERY HIGH SPEED MULTIPLICATION TWO 12-BIT NUMBERS IN 125 ns (TYP)
- PROVIDES TWOS COMPLEMENT PRODUCT WITHOUT CORRECTION
- EXPANDS TO ANY SIZE ARRAY WITHOUT ADDITIONAL COMPONENTS
- ACCEPTS ACTIVE HIGH OR ACTIVE LOW OPERANDS
- EASILY CORRECTABLE FOR UNSIGNED, SIGN-MAGNITUDE OR ONES COMPLEMENT MULTIPLICATION

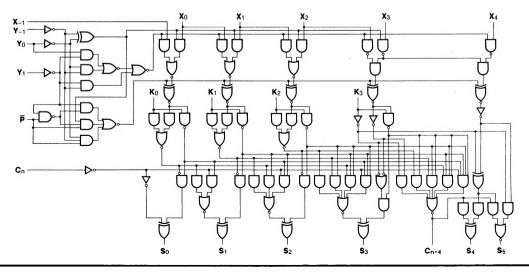
CONNECTION DIAGRAM PINOUT A

LOGIC SYMBOL

ORDERING CODE: See Section 9

	PIN	COMMERCIAL GRADE	MILITARY GRADE	PKG	
PKGS	оит	$V_{CC} = +5.0 \text{ V } \pm 5\%,$ $T_A = 0^{\circ}\text{C to } +70^{\circ}\text{C}$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C to} +125^{\circ} \text{ C}$	TYPE	
Plastic DIP (P)	Α	93S43PC		9N	
Ceramic DIP (D)	Α	93S43DC	93S43DM	6N	
Flatpak (F)	Α	93S43FC	93S43FM	4M	

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions


PIN NAMES	DESCRIPTION	93S (U.L.) HIGH/LOW		
X-1, X3, X4	Multiplicand Inputs	1.0/1.0		
X0, X1, X2	Multiplicand Inputs	2.0/2.0		
Y ₀	Multiplier Input	2.0/2.0		
y_1, y1	Multiplier Inputs	1.0/1.0		
k ₀ — k ₃	Constant Inputs	2.0/2.0		
Cn	Carry Input	1.0/1.0		
C _n P	Polarity Control Input (Active LOW for HIGH Operands)	3.0/3.0		
S ₀ — S ₅	Product Outputs	25/12.5		
Cn + 4	Carry Output	25/12.5		

FUNCTIONAL DESCRIPTION — The '43 is a super fast hardware multiplier employing Schottky technology and twos complement arithmetic. It multiplies a multiplicand of four bits by a multiplier of two bits and forms a basic iterative logic cell. It can also multiply in active HIGH (positive logic) or active LOW (negative logic) representations by reinterpreting the active levels of the inputs, outputs and the Polarity Control (\overline{P}). The binary number with 1 as the most significant bit is treated as a negative number represented in twos complement form. These '43 iterative logic cells can be connected to implement multiplication of an X-bit number by a Y-bit number. This application requires $X \bullet Y \div 4 \bullet 2$ packages and the resulting product has X + Y bits. At the beginning of the array, a constant can be presented at the K inputs that will be added to the least significant part of the product. The packages can be connected in parallel, triangular or split-array scheme depending on the speed requirement. The '41 ALU can be used with these multipliers in the split-array scheme to obtain high speed multiplication.

TARLE	I SWITCHING	TEST	CONDITIONS	:

INPUT	OUTPUTS	INPUTS AT 0 V (Remaining Inputs at 4.5 V)
Cn	Cn + 4, S0 — S3, S4, S5	P̄, y−1, y1, All x
k0 k1 k2 k3 k3	Cn + 4, S0 — S3, S4, S5 Cn + 4, S1 — S3, S4, S5 Cn + 4, S2, S3, S4, S5 S3 S4, S5	P, y-1, y1, All x P, y-1, y1, All x P, y-1, y1, All x P, y-1, y1, All x P, y-1, y1, All x, Cn
X-1 X0 X1 X2 X3, X4 X3, X4 X3, X4	Cn + 4, S0 — S3, S4, S5 Cn + 4, S0 — S3, S4, S5 Cn + 4, S1 — S3, S4, S5 Cn + 4, S2, S3, S4, S5 S3 S4, S5 S4, S5	P, y1, All k P, y-1, y1, All k, Cn P, y-1, All k, Cn
y_1 y0 y1	C _n + 4, S ₀ — S ₃ , S ₄ , S ₅ C _n + 4, S ₀ — S ₃ , S ₄ , S ₅ C _n + 4, S ₀ — S ₃ , S ₄ , S ₅	P, x ₁ , x ₂ , x ₃ , x ₄ , All k P, x ₁ , x ₂ , x ₃ , x ₄ , All k x ₀ , x ₁ , x ₂ , x ₃ , x ₄ , All k

LOGIC DIAGRAM

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER	93\$		UNITS	CONDITIONS
	· Anawer en	Min	Max	5.11.15	
Icc	Power Supply Current		149	mA	Vcc = Max

AC CHARACTERISTICS: $V_{CC} = +5.0 \text{ V}$, $T_A = +25^{\circ} \text{ C}$ (See Section 3 for waveforms and load configurations)

		9	93S C _L = 15 pF		CONDITIONS
SYMBOL	PARAMETER	C _L =			
		Min	Max		
tPLH tPHL	Propagation Delay C _n to C _n + 4		9.0 9.0	ns	Figs. 3-1, 3-5
tPLH tPHL	Propagation Delay Cn to S0 — S3		13 11	ns	Figs. 3-1, 3-4
tpLH tpHL	Propagation Delay C _n to S ₄ , S ₅		16 15	ns	Figs. 3-1, 3'4
tpLH tpHL	Propagation Delay k _n to C _n + 4		12 13	ns	Figs. 3-1, 3-5
tpLH tpHL	Propagation Delay k _n to S ₀ — S ₃		14 12	ns	Figs. 3-1, 3-5
tpLH tpHL	Propagation Delay k _n to S ₄ , S ₅		19 17	ns	Figs. 3-1, 3-4
tPLH tPHL	Propagation Delay		15 24	ns	Figs. 3-1, 3-5
tpLH tpHL	Propagation Delay x _n to S ₀ — S ₃		25 25	ns	Figs. 3-1, 3-4
tpLH tpHL	Propagation Delay x _n to S ₄ , S ₅		30 21	ns	Figs. 3-1, 3-4
tPLH tPHL	Propagation Delay y _n to C _n + 4		25 27	ns	Figs. 3-1, 3-5
tpLH tpHL	Propagation Delay y _n to S ₀ — S ₃		28 27	ns	Figs. 3-1, 3-4
tPLH tPHL	Propagation Delay yn to S ₄ , S ₅		32 30	ns	Figs. 3-1, 3-4