

CMOS $\pm 5 \text{ V/} + 5 \text{ V}$ 4 Ω Single SPDT Switches

ADG619/ADG620

FEATURES

6 Ω (Max) On Resistance 0.8 Ω (Max) On Resistance Flatness 2.7 V to 5.5 V Single Supply ±2.7 V to ±5.5 V Dual Supply **Rail-to-Rail Operation** 8-Lead SOT-23 Package, 8-Lead MSOP Package Typical Power Consumption (<0.1 μW) **TTL/CMOS Compatible Inputs**

APPLICATIONS

Automatic Test Equipment Power Routing Communication Systems Data Acquisition Systems Sample-and-Hold Systems **Avionics Relay Replacement Battery-Powered Systems**

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The ADG619 and the ADG620 are monolithic, CMOS SPDT (single pole, double throw) switches. Each switch conducts equally well in both directions when on.

The ADG619/ADG620 offer low on resistance of 4 Ω , which is matched to within 0.7Ω between channels. These switches also provide low power dissipation yet give high switching speeds. The ADG619 exhibits break-before-make switching action, thus preventing momentary shorting when switching channels. The ADG620 exhibits make-before-break action.

The ADG619/ADG620 are available in an 8-lead SOT-23 package and an 8-lead MSOP package.

Table I. Truth Table for the ADG619/ADG620

IN	Switch S1	Switch S2
0	ON OFF	OFF ON

PRODUCT HIGHLIGHTS

- 1. Low On Resistance (R_{ON}) (4 Ω typ).
- 2. Dual ± 2.7 V to ± 5.5 V or Single 2.7 V to 5.5 V Supply.
- 3. Low Power Dissipation. CMOS construction ensures low power dissipation.
- 4. Fast toN/toFF.
- 5. Tiny 8-Lead SOT-23 Package and 8-Lead MSOP Package.

REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

© 2003 Analog Devices, Inc. All rights reserved.

ADG619/ADG620-SPECIFICATIONS

 $\textbf{DUAL SUPPLY}^{1} \ (\textbf{V}_{DD} = +5 \ \textbf{V} \ \pm \ 10\%, \ \textbf{V}_{SS} = -5 \ \textbf{V} \ \pm \ 10\%, \ \textbf{GND} = 0 \ \textbf{V}. \ \textbf{All specifications} \ -40^{\circ} \textbf{C} \ \text{to} \ +85^{\circ} \textbf{C}, \ \textbf{unless otherwise noted.})$

B Version				
Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (R _{ON})	4 6	V _{SS} to V _{DD}	V Ω typ Ω max	V_{DD} = +4.5 V, V_{SS} = -4.5 V V_{S} = ±4.5 V, I_{S} = -10 mA; Test Circuit 1
On Resistance Match between Channels (ΔR_{ON})	0.7	1.35	Ω typ Ω max	$V_S = \pm 4.5 \text{ V}, I_S = -10 \text{ mA}$
On Resistance Flatness (R _{FLAT (ON)})	0.7 1.15	0.8 1.2	Ω typ Ω max	$V_S = \pm 3.3 \text{ V}, I_S = -10 \text{ mA}$
LEAKAGE CURRENTS				$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.01 ±0.25	±1	nA typ nA max	$V_S = \pm 4.5 \text{ V}, V_D = \mp 4.5 \text{ V};$ Test Circuit 2
Channel ON Leakage I_D , I_S (ON)	± 0.01 ± 0.25	±1	nA typ nA max	$V_S = V_D = \pm 4.5 \text{ V}$; Test Circuit 3
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current	0.005			X7 - X7 X7
${ m I}_{ m INL}$ or ${ m I}_{ m INH}$	0.005	±0.1	μA typ μA max	$V_{IN} = V_{INL} \text{ or } V_{INH}$
C _{IN} , Digital Input Capacitance	2	±0.1	pF typ	
DYNAMIC CHARACTERISTICS ² ADG619				
t_{ON}	80		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	120	155	ns max	$V_S = 3.3 \text{ V}$; Test Circuit 4
$t_{ m OFF}$	45	0.0	ns typ	$R_L = 300 \Omega, C_L = 35 pF$
Donal Defens Male Time Delens	75	90	ns max	$V_S = 3.3 \text{ V}$; Test Circuit 4
Break-Before-Make Time Delay, $t_{\rm BBM}$	40	10	ns typ ns min	$R_L = 300 \Omega$, $C_L = 35 pF$ $V_{S1} = V_{S2} = 3.3 V$; Test Circuit 5
ADG620			110 11111	(\$1 \ \(\frac{1}{32}\) \(\frac{1}{3.5}\) \(\frac{1}{1}\) \(\frac{1}{3.5}\) \(1
t_{ON}	40		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	65	85	ns max	$V_S = 3.3 \text{ V}$; Test Circuit 4
$t_{ m OFF}$	200		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
W. D. C. D. LET. D.	330	400	ns max	$V_S = 3.3 \text{ V}$; Test Circuit 4
Make-Before-Break Time Delay, t_{MBB}	160	10	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
Charge Injection	110	10	ns min pC typ	$V_S = 0$ V; Test Circuit 6 $V_S = 0$ V, $R_S = 0$ Ω , $C_L = 1$ nF; Test Circuit 7
Off Isolation	-67		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Test Circuit 8
Channel-to-Channel Crosstalk	-67		dB typ	Pest Circuit 8 $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Test Circuit 10
Bandwidth -3 dB	190		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Test Circuit 9
C_{S} (OFF)	25		pF typ	f = 1 MHz
$C_{D,}C_{S}(ON)$	95		pF typ	f = 1 MHz
POWER REQUIREMENTS				$V_{\rm DD}$ = +5.5 V, $V_{\rm SS}$ = -5.5 V
I_{DD}	0.001		μA typ	Digital Inputs = 0 V or 5.5 V
		1.0	μA max	
${ m I}_{ m SS}$	0.001	1.0	μA typ	Digital Inputs = 0 V or 5.5 V
		1.0	μA max	

NOTES

 $^{^{1}}Temperature$ range is as follows: B Version, $-40^{\circ}C$ to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

$\textbf{SINGLE SUPPLY}^{1} \text{ (V}_{DD} = +5 \text{ V} \pm 10\%, V_{SS} = 0 \text{ V, GND} = 0 \text{ V. All specifications} -40^{\circ}\text{C to} +85^{\circ}\text{C, unless otherwise noted.)}$

Parameter	+25°C	B Version -40°C to +85°C	Unit	Test Conditions/Comments
	123 0	10 0 10 105 0		1 ost conditions, comments
ANALOG SWITCH Analog Signal Range		$0~\mathrm{V}$ to V_{DD}	V	$V_{DD} = 4.5 \text{ V}, V_{SS} = 0 \text{ V}$
On Resistance (R_{ON})	7	O V to VDD	1	$V_{S} = 0 \text{ V to } 4.5 \text{ V}, V_{SS} = 0 \text{ V}$
On Resistance (R _{ON})		10 5	Ω typ	
On Resistance Match between	10	12.5	Ω max	Test Circuit 1
	0.0		0.4	W = 0 W to 4 5 W I = 10 ··· A
Channels (ΔR_{ON})	0.8	1.2	Ω typ	$V_S = 0 \text{ V to } 4.5 \text{ V}, I_S = -10 \text{ mA}$
	1.1	1.3	Ω max	W = 15W 22W I = 10 A
On Resistance Flatness $(R_{FLAT (ON)})$	0.5	0.5	Ω typ	$V_S = 1.5 \text{ V to } 3.3 \text{ V}, I_S = -10 \text{ mA}$
		1	Ω max	
LEAKAGE CURRENTS				$V_{\rm DD} = 5.5 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_S = 1 \text{ V}/4.5 \text{ V}, V_D = 4.5 \text{ V}/1 \text{ V};$
	±0.25	±1	nA max	Test Circuit 2
Channel ON Leakage ID, IS (ON)	±0.01		nA typ	$V_S = V_D = 1 \text{ V}/4.5 \text{ V};$
	±0.25	±1	nA max	Test Circuit 3
DICITAL INDICES				
DIGITAL INPUTS		2.4	Vmin	
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current	0.005		۸	V -V orV
I_{INL} or I_{INH}	0.005	10.1	μA typ	$V_{IN} = V_{INL}$ or V_{INH}
C. Disital Issuer Consider		± 0.1	μA max	
C _{IN} , Digital Input Capacitance	2		pF typ	
DYNAMIC CHARACTERISTICS ²				
ADG619				
t_{ON}	120		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	220	280	ns max	$V_S = 3.3 \text{ V}$; Test Circuit 4
$t_{ m OFF}$	50		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	75	110	ns max	$V_S = 3.3 \text{ V}$; Test Circuit 4
Break-Before-Make Time Delay, t _{BBM}	70		ns typ	$R_L = 300 \Omega, C_L = 35 pF,$
		10	ns min	$V_{S1} = V_{S2} = 3.3 \text{ V}$; Test Circuit 5
ADG620				
t_{ON}	50		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	85	110	ns max	$V_S = 3.3 \text{ V}$; Test Circuit 4
$t_{ m OFF}$	210		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	340	420	ns max	$V_S = 3.3 \text{ V}$; Test Circuit 4
Make-Before-Break Time Delay, t _{MBB}	170		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
		10	ns min	$V_S = 3.3 \text{ V}$; Test Circuit 6
Charge Injection	6		pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$
				Test Circuit 7
Off Isolation	-67		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
				Test Circuit 8
Channel-to-Channel Crosstalk	-67		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
				Test Circuit 10
Bandwidth -3 dB	190		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Test Circuit 9
C_{S} (OFF)	25		pF typ	f = 1 MHz
$C_D, C_S(ON)$	95		pF typ	f = 1 MHz
POWER REQUIREMENTS				V _{DD} = 5.5 V
I _{DD}	0.001		μA typ	Digital Inputs = 0 V or 5.5 V
-עע		1.0	μA max	g.tm 2mp
		1.0	M I III ax	

NOTES

REV. A -3-

 $^{^{1}}Temperature$ range is as follows: B Version, $-40\,^{\circ}C$ to +85 $^{\circ}C.$

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS1

$(T_A = 25^{\circ}C, \text{ unless otherwise noted.})$
V _{DD} to V _{SS}
V _{DD} to GND0.3 V to +6.5 V
V_{SS} to GND +0.3 V to -6.5 V
Analog Inputs ² V_{SS} – 0.3 V to V_{DD} + 0.3 V
Digital Inputs ² 0.3 V to V_{DD} + 0.3 V or
30 mA, Whichever Occurs First
Peak Current, S or D
(Pulsed at 1 ms, 10% Duty Cycle max)
Continuous Current, S or D
Operating Temperature Range
Industrial (B Version)40°C to +85°C
Storage Temperature Range65°C to +150°C
Junction Temperature
MSOP Package
θ_{JA} Thermal Impedance
θ_{JC} Thermal Impedance
SOT-23 Package
θ_{JA} Thermal Impedance
θ_{JC} Thermal Impedance 91.99°C/W
Lead Temperature, Soldering (10 sec) 300°C
IR Reflow, Peak Temperature
NOTES

¹ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

PIN CONFIGURATIONS

8-Lead SOT-23 (RT-8)

8-Lead MSOP (RM-8)

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding Information*
ADG619BRM	−40°C to +85°C	Micro Small Outline Package (MSOP)	RM-8	SVB
ADG619BRM-REEL	−40°C to +85°C	Micro Small Outline Package (MSOP)	RM-8	SVB
ADG619BRM-REEL7	-40°C to +85°C	Micro Small Outline Package (MSOP)	RM-8	SVB
ADG619BRT-R2	−40°C to +85°C	Plastic Surface Mount Package (SOT-23)	RT-8	SVB
ADG619BRT-REEL	−40°C to +85°C	Plastic Surface Mount Package (SOT-23)	RT-8	SVB
ADG619BRT-REEL7	−40°C to +85°C	Plastic Surface Mount Package (SOT-23)	RT-8	SVB
ADG620BRM	−40°C to +85°C	Micro Small Outline Package (MSOP)	RM-8	SWB
ADG620BRM-REEL	–40°C to +85°C	Micro Small Outline Package (MSOP)	RM-8	SWB
ADG620BRM-REEL7	–40°C to +85°C	Micro Small Outline Package (MSOP)	RM-8	SWB
ADG620BRT-REEL	−40°C to +85°C	Plastic Surface Mount Package (SOT-23)	RT-8	SWB
ADG620BRT-REEL7	−40°C to +85°C	Plastic Surface Mount Package (SOT-23)	RT-8	SWB

^{*}Branding on SOT-23 and MSOP packages is limited to three characters due to space constraints.

CAUTION_

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG619/ADG620 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

² Overvoltages at IN, S, or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

TERMINOLOGY

Mnemonic	Description
$\overline{V_{DD}}$	Most Positive Power Supply Potential.
V_{SS}	Most Negative Power Supply in a Dual-Supply Application. In single-supply applications, this should be
	tied to ground at the device.
GND	Ground (0 V) Reference.
I_{DD}	Positive Supply Current.
I_{SS}	Negative Supply Current.
S	Source Terminal. May be an input or output.
D	Drain Terminal. May be an input or output.
IN	Logic Control Input.
R _{ON}	Ohmic Resistance between D and S.
DR_{ON}	On resistance match between any two channels, i.e., $R_{\rm ON}$ Max – $R_{\rm ON}$ Min.
R _{FLAT (ON)}	Flatness is defined as the difference between the maximum and minimum value of on resistance as
, ,	measured over the specified analog signal range.
I _S (OFF)	Source Leakage Current with the Switch OFF.
$I_D, I_S (ON)$	Channel Leakage Current with the Switch ON.
$V_{D}(V_{S})$	Analog Voltage on Terminals D, S.
V_{INL}	Maximum Input Voltage for Logic 0.
V_{INH}	Minimum Input Voltage for Logic 1.
$I_{INL}(I_{INH})$	Input Current of the Digital Input.
C_S (OFF)	OFF Switch Source Capacitance.
C_D , C_S (ON)	ON Switch Capacitance.
t_{ON}	Delay between applying the digital control input and the output switching ON.
t _{OFF}	Delay between applying the digital control input and the output switching OFF.
$t_{ m MBB}$	ON time is measured between the 80% points of both switches, when switching from one address state to another.
$t_{ m BBM}$	OFF time or ON time is measured between the 90% points of both switches, when switching from one
	address state to another.
Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during switching.
Crosstalk	A measure of unwanted signal coupled through from one channel to another as a result of parasitic
	capacitance.
Off Isolation	A measure of unwanted signal coupling through an OFF switch.
Bandwidth	The frequency response of the ON switch.
Insertion Loss	The loss due to the on resistance of the switch.

Typical Performance Characteristics

TPC 1. On Resistance vs. V_D (V_S) (Dual Supply)

TPC 2. On Resistance vs. V_D (V_S) (Single Supply)

TPC 3. On Resistance vs. V_D (V_S) for Different Temperatures (Dual Supply)

REV. A -5-

TPC 4. On Resistance vs. V_D (V_S) for Different Temperatures (Single Supply)

TPC 5. Leakage Currents vs. Temperature (Dual Supply)

TPC 6. Leakage Currents vs. Temperature (Single Supply)

TPC 7. Charge Injection vs. Source Voltage

TPC 8. t_{ON}/t_{OFF} Times vs. Temperature

TPC 9. Off Isolation vs. Frequency

TPC 10. Crosstalk vs. Frequency

TPC 11. On Response vs. Frequency

-6- REV. A

TEST CIRCUITS

Test Circuit 1. On Resistance

Test Circuit 2. Off Leakage

Test Circuit 3. On Leakage

Test Circuit 4. Switching Times

Test Circuit 5. Break-Before-Make Time Delay, t_{BBM} (ADG619 Only)

Test Circuit 6. Make-Before-Break Time Delay, t_{MBB} (ADG620 Only)

Test Circuit 7. Charge Injection

REV. A -7-

Test Circuit 8. Off Isolation

Test Circuit 10. Channel-to-Channel Crosstalk

 $\label{eq:voltage} \text{INSERTION LOSS} = 20 \text{ LOG} \quad \frac{\text{V}_{\text{OUT}} \text{ WITH SWITCH}}{\text{V}_{\text{S}} \text{ WITHOUT SWITCH}}$

Test Circuit 9. Bandwidth

OUTLINE DIMENSIONS

8-Lead Mini Small Outline Package [MSOP] (RM-8)

Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-187AA

8-Lead Small Outline Transistor Package [SOT-23] (RT-8)

Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-178BA

Revision History

Location	Page
6/03—Data Sheet changed from REV. 0 to REV. A.	
Edits to SPECIFICATIONS	
Updated ORDERING GUIDE	4
Updated OUTLINE DIMENSIONS	8
8	DEV. A