

$0.5~\Omega$ CMOS 1.8 V to 5.5 V 2:1 Mux/SPDT Switches

ADG819/ADG820

FEATURES

Low On Resistance 0.8 Ω Max at 125°C 0.25 Ω Max On Resistance Flatness 1.8 V to 5.5 V Single Supply 200 mA Current Carrying Capability Automotive Temperature Range: -40°C to +125°C Rail-to-Rail Operation 6-Lead SOT-23 Package, 8-Lead μ SOIC Package, and 6-Bump MicroCSP (Micro Chip Scale Package) ADG819 Fast Switching Times Typical Power Consumption (<0.01 μ W) TTL-/CMOS-Compatible Inputs Pin Compatible with the ADG719 (ADG819)

APPLICATIONS
Power Routing
Battery-Powered Systems
Communication Systems
Data Acquisition Systems
Cellular Phones
Modems
PCMCIA Cards
Hard Drives
Relay Replacement

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The ADG819 and the ADG820 are monolithic, CMOS, SPDT (single-pole, double-throw) switches. These switches are designed on a submicron process that provides low power dissipation yet gives high switching speed, low On resistance, and low leakage currents.

Low power consumption and an operating supply range of $1.8\,\mathrm{V}$ to $5.5\,\mathrm{V}$ make the ADG819 and ADG820 ideal for battery-powered, portable instruments.

Each switch of the ADG819 and the ADG820 conducts equally well in both directions when on. The ADG819 exhibits break-before-make switching action, thus preventing momentary shorting when switching channels. The ADG820 exhibits make-before-break action.

The ADG819 and the ADG820 are available in a 6-lead SOT-23 package and an 8-lead $\mu SOIC$ package. The ADG819 is also available in a 2×3 bump 1.14 mm \times 2.18 mm MicroCSP package. This chip occupies only a 1.14 mm \times 2.18 mm area, making it the ideal candidate for space-constrained applications.

PRODUCT HIGHLIGHTS

- 1. Very low ON resistance, 0.5Ω typical
- 2. 1.8 V to 5.5 V single-supply operation
- 3. High current carrying capability
- 4. Tiny 6-lead SOT-23 package, 8-lead $\mu SOIC$ package, and 2 \times 3 bump 1.14 mm \times 2.18 mm MicroCSP package (ADG819 only)

REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700 www.analog.com
Fax: 781/326-8703 © Analog Devices, Inc., 2002

$ADG819/ADG820 — SPECIFICATIONS^1 \ (v_{DD} = 5 \ v \ \pm \ 10\%, \ \text{gnd} = 0 \ v.)$

Parameter	25°C	-40°C to +85°C	-40°C to +125°C ²	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
ON Resistance (R _{ON})	0.5		DD	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = 100 \text{ mA};$
CIV)	0.6	0.7	0.8	Ω max	Test Circuit 1
ON Resistance Match Between					
Channels (ΔR_{ON})	0.06			Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = 100 \text{ mA}$
S W S S C OIV	0.08	0.1	0.12	Ω max	3
ON Resistance Flatness (R _{FLAT(ON)})	0.1			Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = 100 \text{ mA}$
	0.17	0.2	0.25	Ω max	S S S S S S DD S
LEAKACE CURRENTE					V - 5 5 V
LEAKAGE CURRENTS	1001				$V_{\rm DD} = 5.5 \text{ V}$
Source OFF Leakage I _S (OFF)	± 0.01	1.2	1.10	nA typ	$V_S = 4.5 \text{ V/1 V}, V_D = 1 \text{ V/4.5 V};$
	±0.25	±3	± 10	nA max	Test Circuit 2
Channel ON Leakage I_D , I_S (ON)	±0.01			nA typ	$V_S = V_D = 1 \text{ V, or } V_S = V_D = 4.5 \text{ V;}$
	±0.25	±3	±25	nA max	Test Circuit 3
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current					
I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			± 0.1	μA max	
C _{IN} , Digital Input Capacitance	5			pF typ	
DYNAMIC CHARACTERISTICS ³					
ADG819					
	35			no tun	$R_{L} = 50 \Omega, C_{L} = 35 pF,$
t_{ON}	45	50	55	ns typ ns max	$V_S = 3 \text{ V}$; Test Circuit 4
t	10	50		ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$,
$t_{ m OFF}$	16	18	21	ns max	$V_S = 3 \text{ V}$; Test Circuit 4
Break-Before-Make Time Delay, t _{BBM}	5	10	21	ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$,
Break-Belofe-Wake Time Belay, t _{BBM}			1	ns min	$V_{S1} = V_{S2} = 3 \text{ V}$; Test Circuit 5
ADG820			1	113 11111	$\sqrt{s_1} = \sqrt{s_2} = 3$ $\sqrt{s_1}$ rest effective
t _{ON}	10			ns typ	$R_{L} = 50 \Omega, C_{L} = 35 pF,$
CON	18	20	22	ns max	$V_S = 3 \text{ V}$; Test Circuit 4
$t_{ m OFF}$	26	20	22	ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$,
COFF	40	45	50	ns max	$V_S = 3 \text{ V}$; Test Circuit 4
Make-Before-Break Time Delay, t _{MBB}	15	13	30	ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$,
Trace Before Break Time Beray, t _{MBB}			1	ns min	$V_S = 0 \text{ V}$; Test Circuit 6
Charge Injection	20		1	pC typ	$V_S = 0.5 \text{ V}, R_S = 0.0, C_L = 1 \text{ nF};$
Gharge Injection	20			potyp	Test Circuit 7
Off Isolation	-71			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$;
	'1			dD typ	Test Circuit 8
Channel-to-Channel Crosstalk	-72			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$;
Chamici-to-Chamici Ciusstain	-12			dD typ	Test Circuit 10
Bandwidth -3 dB	17			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Test Circuit 9
C _S (OFF)	80			pF typ	f = 1 MHz
$C_S(ON)$ $C_{D_s}C_S(ON)$	300			pF typ	f = 1 MHz
	700			Pr typ	
POWER REQUIREMENTS					$V_{\rm DD} = 5.5 \text{ V}$
					Digital Inputs = 0 V or 5.5 V
I_{DD}	0.001		•	μA typ	
		1.0	2.0	μA max	

-2-REV. 0

¹Temperature range is as follows: -40° C to $+125^{\circ}$ C. ²ON resistance parameters tested with $I_{\rm S}$ = 10 mA.

³Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

$SPECIFICATIONS^{1}(v_{DD}=2.7 \text{ V to } 3.6 \text{ V, GND}=0 \text{ V.})$

Parameter	25°C	-40°C to +85°C	-40°C to +125°C ²	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V_{DD}	V	
ON Resistance (R _{ON})	0.7		· · · · · · · · · · · · · · · · · · ·	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = 100 \text{ mA};$
olv	1.4	1.5	1.6	Ω max	Test Circuit 1
ON Resistance Match Between					
Channels (ΔR_{ON})	0.06			Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = 100 \text{ mA}$
V 017/		0.13	0.13	Ω max	5 55 5
ON Resistance Flatness (R _{FLAT(ON)})	0.25			Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = 100 \text{ mA}$
LEAKAGE CURRENTS					$V_{\rm DD} = 3.6 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.01			nA typ	$V_S = 3.3 \text{ V/1 V}, V_D = 1 \text{ V/3.3 V};$
g	±0.25	±3	±10	nA max	Test Circuit 2
Channel ON Leakage I _D , I _S (ON)	±0.01			nA typ	$V_S = V_D = 1 \text{ V, or } V_S = V_D = 3.3 \text{ V}$
2000 and 200	±0.25	±3	±25	nA max	Test Circuit 3
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current			0.0	7 111421	
I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INI}$ or V_{INH}
TINE OF TINH	0.003		± 0.1	μA max	VIN VINL OF VINH
C _{IN} , Digital Input Capacitance	5		_0.1	pF typ	
DYNAMIC CHARACTERISTICS ³				Pr typ	
ADG819					
t _{ON}	40			ns typ	$R_L = 50 \Omega, C_L = 35 pF,$
ON	60	65	70	ns max	$V_S = 1.5 \text{ V}$; Test Circuit 4
$t_{ m OFF}$	10			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$,
OFF	16	18	21	ns max	$V_S = 1.5 \text{ V}$; Test Circuit
Break-Before-Make Time Delay, t _{BBM}	40	10		ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$,
			1	ns min	$V_{S1} = V_{S2} = 1.5 \text{ V}$; Test Circuit 5
ADG820					31 32
t_{ON}	20			ns typ	$R_L = 50 \Omega, C_L = 35 pF,$
	35	40	45	ns max	$V_S = 1.5 \text{ V}$; Test Circuit 4
$t_{ m OFF}$	30			ns typ	$R_L = 50 \Omega, C_L = 35 pF,$
	45	50	55	ns max	$V_S = 1.5 \text{ V}$; Test Circuit 4
Make-Before-Break Time Delay, t _{MBB}	10			ns typ	$R_L = 50 \Omega, C_L = 35 pF,$
			1	ns min	$V_S = 1.5 \text{ V}$; Test Circuit 6
Charge Injection	10			pC typ	$V_S = 1.5 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$ Test Circuit 7
Off Isolation	-71			dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 100 kHz$
				- J F	Test Circuit 8
Channel-to-Channel Crosstalk	-72			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$ Test Circuit 10
Bandwidth –3 dB	17			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Test Circuit
C _S (OFF)	80			pF typ	f = 1 MHz
$C_{\rm D}$, $C_{\rm S}$ (ON)	300			pF typ	f = 1 MHz
POWER REQUIREMENTS				F -3F	V _{DD} = 3.6 V
•					Digital Inputs = 0 V or 3.6 V
I_{DD}	0.001		• •	μA typ	
		1.0	2.0	μA max	

REV. 0 -3-

¹Temperature range is as follows: -40° C to $+125^{\circ}$ C. ²ON resistance parameters tested with I_S = 10 mA.

³Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS¹

$(T_A = 25^{\circ}C, \text{ unless otherwise noted.})$
V_{DD} to GND
Analog Inputs ² -0.3 V to $V_{DD} + 0.3 \text{ V}$ or
30 mA, Whichever Occurs First
Digital Inputs ² -0.3 V to $V_{DD} + 0.3 \text{ V}$ or
30 mA, Whichever Occurs First
Peak Current, S or D 400 mA
(Pulsed at 1 ms, 10% Duty Cycle Max)
Continuous Current, S or D
Operating Temperature Range
Industrial
Automotive
Storage Temperature Range65°C to +150°C
Junction Temperature
μSOIC Package
θ_{JA} Thermal Impedance
θ_{JC} Thermal Impedance
SOT-23 Package (4-Layer Board)
θ_{JA} Thermal Impedance

θ_{JA} Thermal Impedance	. TBD
Lead Temperature, Soldering (10 sec)	300°C
IR Reflow, Peak Temperature (<20 sec)	235°C

NOTES

Table I. Truth Table for the ADG819/ADG820

IN	Switch S1	Switch S2	
0	ON	OFF	
1	OFF	ON	

PIN CONFIGURATIONS

6-Lead SOT-23

2 × 3 MicroCSP

ORDERING GUIDE

Model Option	Temperature Range	Brand ¹	Package Description	Package
ADG819BRM	−40°C to +125°C	SNB	μSOIC (MicroSmall Outline IC)	RM-8
ADG819BRT	−40°C to +125°C	SNB	SOT-23 (Plastic Surface-Mount)	RT-6 ²
ADG819BCB	−40°C to +85°C	SNB	MicroCSP (Micro Chip Scale Package)	$CB-6^2$
ADG820BRM	−40°C to +125°C	SPB	μSOIC (MicroSmall Outline IC)	RM-8
ADG820BRT	−40°C to +125°C	SPB	SOT-23 (Plastic Surface-Mount)	RT-6 ²

NOTES

-4- REV. 0

¹ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

² Overvoltages at IN, S, or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

¹Branding on these packages is limited to three characters due to space constraints.

²Contact factory for availability.

TERMINOLOGY

V _{DD} GND	Most Positive Power Supply Potential Ground (0 V) Reference
I_{DD}	Positive Supply Current
S	Source Terminal. May be an input or output.
D	Drain Terminal. May be an input or output.
IN	Logic Control Input
R_{ON}	Ohmic Resistance between D and S
ΔR_{ON}	ON Resistance Match between Any Two Channels, i.e., R _{ON} max – R _{ON} min
$R_{FLAT(ON)}$	Flatness is defined as the difference between the maximum and minimum value of ON resistance as
I (OEE)	measured over the specified analog signal range.
I _S (OFF)	Source Leakage Current with the Switch OFF
$I_D, I_S (ON)$	Channel Leakage Current with the Switch ON
$V_{D}(V_{S})$	Analog Voltage on Terminals D, S
V_{INL}	Maximum Input Voltage for Logic "0"
V _{INH}	Minimum Input Voltage for Logic "1"
$I_{INL}(I_{INH})$	Input Current of the Digital Input
C_{S} (OFF)	OFF Switch Source Capacitance
C_D , C_S (ON)	ON Switch Capacitance
t _{ON}	Delay between applying the digital control input and the output switching ON.
t _{OFF}	Delay between applying the digital control input and the output switching OFF.
t_{BBM}	OFF time or ON time measured between the 90% points of both switches when switching from one address state to another.
$t_{ m MBB}$	ON time measured between the 80% points of both switches when switching from one address state to another.
Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during switching.
Crosstalk	A measure of unwanted signal coupled through from one channel to another as a result of parasitic capacitance.
OFF Isolation	A measure of unwanted signal coupling through an OFF switch.
Bandwidth	Frequency at which the output is attenuated by –3 dB.
ON Response	Frequency Response of the ON Switch
Insertion Loss	Loss due to the ON Resistance of the Switch

CAUTION_

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG819/ADG820 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

REV. 0 -5-

ADG819/ADG820 – Typical Performance Characteristics

TPC 1. ON Resistance vs. V_D (V_S)

 $V_{DD} = 3V$

TPC 2. ON Resistance vs. V_D (V_S)

TPC 5. ON Resistance vs. V_D (V_S) for Different Temperatures

TPC 3. Leakage Currents vs. Temperatures

TPC 6. t_{ON}/t_{OFF} Times vs. Temperature (ADG819)

-6-REV. 0

TPC 7. Charge Injection vs. Source Voltage

TPC 8. OFF Isolation vs. Frequency

TPC 9. Crosstalk vs. Frequency

TPC 10. ON Response vs. Frequency

TPC 11. Logic Threshold vs. Supply Voltage

REV. 0 -7-

Test Circuits

Test Circuit 1. ON Resistance

Test Circuit 2. OFF Leakage

Test Circuit 3. ON Leakage

Test Circuit 4. Switching Times

Test Circuit 5. Break-Before-Make Time Delay, t_{BBM} (ADG819 Only)

Test Circuit 6. Make-Before-Break Time Delay, t_{MBB} (ADG820 Only)

-8- REV. 0

Test Circuit 7. Charge Injection

Test Circuit 8. OFF Isolation

Test Circuit 9. Bandwidth

Test Circuit 10. Channel-to-Channel Crosstalk

REV. 0 –9–

OUTLINE DIMENSIONS

6-Lead Plastic Surface-Mount Package (RT-6)

Dimensions shown in inches and (mm)

8-Lead μSOIC Package (RM-8)

Dimensions shown in inches and (mm)

2×3 Array for MicroCSP (CB-6)

Dimensions shown in millimeters and (inches)

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

-10- REV. 0