

SBAS414C - JULY 2009 - REVISED DECEMBER 2010

24-Bit Analog-to-Digital Converter for Bridge Sensors

FEATURES

www.ti.com

- Complete Front-End for Bridge Sensors
- Internal Amplifier, Gain of 128
- Internal Oscillator
- Low-Side Power Switch for Bridge Sensor
- Low Noise: 35nVrms
- Selectable Data Rates: 10SPS or 80SPS
- Simultaneous 50Hz and 60Hz Rejection at 10SPS
- Input EMI Filter
- External Voltage Reference up to 5V for Ratiometric Measurements
- Simple, Pin-Driven Control
- Two-Wire Serial Digital Interface
- Supply Range: 3V to 5.3V
- Package: SOIC-16
- Temperature Range: -40°C to +85°C

APPLICATIONS

- Weigh Scales
- Strain Gauges
- Load Cells
- Industrial Process Control

DESCRIPTION

The ADS1231 is a precision, 24-bit analog-to-digital converter (ADC). With an onboard low-noise amplifier, onboard oscillator, precision third-order 24-bit delta-sigma ($\Delta\Sigma$) modulator, and bridge power switch, the ADS1231 provides a complete front-end solution for bridge sensor applications including weigh scales, strain gauges, and load cells.

The low-noise amplifier has a gain of 128, supporting a full-scale differential input of ± 19.5 mV. The $\Delta\Sigma$ ADC has 24-bit resolution and is comprised of a third-order modulator and fourth-order digital filter. Two data rates are supported: 10SPS (with both 50Hz and 60Hz rejection) and 80SPS. The ADS1231 can be put in a low-power standby mode or shut off completely in power-down mode.

The ADS1231 is controlled by dedicated pins; there are no digital registers to program. Data are output over an easily-isolated serial interface that connects directly to the MSP430 and other microcontrollers.

The ADS1231 is available in an SO-16 package and is specified from -40° C to $+85^{\circ}$ C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

SBAS414C – JULY 2009–REVISED DECEMBER 2010

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION

For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the device product folder at www.ti.com.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Over operating free-air temperature range, unless otherwise noted.

		ADS1231	UNIT
AVDD to GND		-0.3 to +6	V
DVDD to GND		-0.3 to +6	V
Input current		100, momentary	mA
		10, continuous	mA
Analog input voltage to GND		-0.3 to AVDD + 0.3	V
Digital input vo	Itage to GND	-0.3 to DVDD + 0.3	V
ESD ⁽²⁾	Human body model (HBM) JEDEC standard 22, test method A114-C.01, all pins	±2000	V
ESD(=)	Charged device model (CDM) JEDEC standard 22, test method C101, all pins	±500	V
Maximum junction temperature		+150	°C
Operating temperature range		-40 to +85	°C
Storage tempe	rature range	-60 to +150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) CAUTION: ESD sensitive device. Precaution should be used when handling the device in order to prevent permanent damage.

THERMAL INFORMATION

		ADS1231	
	THERMAL METRIC ⁽¹⁾	SOIC (D)	UNITS
		16 PINS	
θ_{JA}	Junction-to-ambient thermal resistance	79.5	
θ_{JCtop}	Junction-to-case (top) thermal resistance	37.5	
θ_{JB}	Junction-to-board thermal resistance	37.1	°C/W
ΨJT	Junction-to-top characterization parameter	5.6	°C/W
ΨJB	Junction-to-board characterization parameter	36.7	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	n/a	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

SBAS414C-JULY 2009-REVISED DECEMBER 2010

www.ti.com

ELECTRICAL CHARACTERISTICS

Minimum/maximum limit specifications apply from -40°C to +85°C. Typical specifications at +25°C.

All appositions of				- CND uplace etherwise noted
All specifications at	AVDD = DVDD	= VREFF = +31	$v \cdot v \cap M = 2.3v$ and $v \in F$	= GND, unless otherwise noted.
			, . CIVI	

				ADS1231		
PARAMI	ETER	CONDITIONS	MIN	ТҮР	MAX	UNIT
ANALOG INPUTS		-	-	L	I	
				±0.5V _{REF} /128		V
Full-scale input voltage (AINP – AINN)		V _{REF} = AVDD = 5V		±19.5		mV
		V _{REF} = AVDD = 3V		±11.7		mV
Common-mode input ra	nge		GND + 1.5		AVDD – 1.5	V
Differential input curren	t			±2		nA
LOW-SIDE POWER SW	ИТСН					
		$AVDD = 5V, I_{SW} = 30mA$		3.5	5	Ω
On-resistance (R _{ON})		$AVDD = 3V, I_{SW} = 30mA$		4	7	Ω
Current through switch					30	mA
SYSTEM PERFORMAN	NCE			1	I	
Resolution		No missing codes	24			Bits
		Internal oscillator, SPEED = high		80		SPS
		Internal oscillator, SPEED = low		10		SPS
Data rate		External oscillator, SPEED = high		f _{CLK} /61, 440		SPS
		External oscillator, SPEED = low		f _{CLK} /491, 520		SPS
Digital filter settling time	•	Full settling		4		Conversions
Integral nonlinearity (IN		Differential input, end-point fit		±8		ppm
Input offset error	,			10		μV
Input offset drift				±20		nV/°C
Gain error				1		%
Gain drift				±2		ppm/°C
		$f_{IN} = 50$ Hz or 60Hz ±1Hz, $f_{DATA} = 10$ SPS, internal oscillator	80	100		dB
Normal-mode rejection ⁽	.,	$f_{IN} = 50$ Hz or 60Hz ±1Hz, $f_{DATA} = 10$ SPS, external oscillator ⁽²⁾	90	110		dB
Common-mode rejectio	n	At dc		110		dB
		$f_{DATA} = 10SPS, AVDD = V_{REF} = 5V$		35		nV, rms
Noice		$f_{DATA} = 80SPS, AVDD = V_{REF} = 5V$		102		nV, rms
Noise		$f_{DATA} = 10SPS, AVDD = V_{REF} = 5V$		232		nV, P-P
		$f_{DATA} = 80SPS, AVDD = V_{REF} = 5V$		622		nV, P-P
Power-supply rejection		At dc	90	100		dB
VOLTAGE REFERENC	E INPUT					
Voltage reference input	(V _{REF})	V _{REF} = VREFP – VREFN	1.5	AVDD	AVDD + 0.1	V
Negative reference inpu	ıt (VREFN)		AGND – 0.1		VREFP – 1.5	V
Positive reference input (VREFP)			VREFN + 1.5		AVDD + 0.1	V
Voltage reference input	current			10		nA
DIGITAL INPUT/OUTP	UT (DVDD = 3V to	5.3V)				
N	/ _{IH}		0.8 DVDD		DVDD + 0.1	V
	/ _{IL}		GND		0.2 DVDD	V
Logic levels	/ _{ОН}	I _{OH} = 500μA	DVDD - 0.4			V
	/ _{OL}	I _{OL} = 500μA			0.2 DVDD	V
Input leakage		0 < V _{DIGITAL INPUT} < DVDD			±10	μA
Serial clock input freque	ency (fscik)				5	MHz

Specification is assured by the combination of design and final test. External oscillator = 4.9152MHz.

(1) (2)

SBAS414C -JULY 2009-REVISED DECEMBER 2010

www.ti.com

ELECTRICAL CHARACTERISTICS (continued)

Minimum/maximum limit specifications apply from -40° C to $+85^{\circ}$ C. Typical specifications at $+25^{\circ}$ C. All specifications at AVDD = DVDD = VREFP = +5V, $V_{CM} = 2.5V$ and VREFN = GND, unless otherwise noted.

			ADS1231		UNIT
PARAMETER	CONDITIONS	MIN	TYP	MAX	
POWER SUPPLY		•	•		
Power-supply voltage (AVDD, DVDD)		3		5.3	V
	Normal mode, AVDD = 3V		900		μА
	Normal mode, AVDD = 5V		900		μΑ
Analog supply current	Standby mode		0.1		μA
	Power-down		0.1		μΑ
	Normal mode, DVDD = 3V		60		μA
	Normal mode, DVDD = 5V		95		μΑ
Digital supply current	Standby mode, SCLK = high, DVDD = 3V		45		μA
	Standby mode, SCLK = high, DVDD = 5V		65		μΑ
	Power-down		0.2		μА
	Normal mode, AVDD = DVDD = 3V		2.9		mW
Power dissipation, total	Normal mode, AVDD = DVDD = 5V		5		mW
TEMPERATURE		•			
Operating temperature range		-40		+85	°C
Specified temperature range		-40		+85	°C

SBAS414C - JULY 2009-REVISED DECEMBER 2010

PIN CONFIGURATION

PIN DESCRIPTIONS

NAME	TERMINAL	ANALOG/DIGITAL INPUT/OUTPUT	DESCRIPTION			
DVDD	1	Digital	Digital power supply			
GND	2	Supply	Ground for digital and analog supplies			
CLKIN	3	Digital input	External clock input: typically 4.9152MHz. Tie low to activate internal oscillator.			
			Data rate select:			
SPEED	4	Digital input	SPEED DATA RATE			
SPEED	4	Digital input	0 10SPS			
			1 80SPS			
CAP	5	Analog	Gain amplifier bypass capacitor connection			
CAP	6	Analog	Gain amplifier bypass capacitor connection			
AINP	7	Analog input	Positive analog input			
AINN	8	Analog input	Negative analog input			
VREFN	9	Analog input	Negative reference input			
VREFP	10	Analog input	Positive reference input			
GND	11	Supply	Ground for digital and analog supplies			
PSW	12	Analog	Low-side power switch			
AVDD	13	Supply	Analog power supply			
PDWN	14	Digital input	Power-down: holding this pin low powers down the entire converter and resets the ADC.			
SCLK	15	Digital input	Serial clock: clock out data on the rising edge. Also used to initiate Standby mode. See the <i>Standby Mode</i> section for more details.			
DRDY/DOUT	16	Digital output	Dual-purpose output: Data ready: indicates valid data by going low. Data output: outputs data, MSB first, on the first rising edge of SCLK.			

NOISE PERFORMANCE

The ADS1231 offers outstanding noise performance. Table 1 summarizes the typical noise performance with inputs shorted externally for different data rates and voltage reference values.

The RMS and Peak-to-Peak noise are referred to the input. The effective number of bits (ENOB) is defined as: ENOB = In (FSR/RMS noise)/In(2)

The Noise-Free Bits are defined as:

Noise-Free Bits = In (FSR/Peak-to-Peak Noise)/In(2)

Where:

FSR (Full-Scale Range) = V_{REF} /Gain.

DATA RATE	AVDD and V _{REF} (V)	RMS NOISE ⁽¹⁾ (nV)	PEAK-TO-PEAK NOISE ⁽¹⁾ (nV)	ENOB (RMS)	NOISE-FREE BITS
10	5	35.2	231.9	20.1	17.4
10	3	33.5	199.2	19.4	16.8
80	5	102.1	622.1	18.5	15.9
80	3	80.3	549.6	18.2	15.4

Table 1. Noise Performance

(1) Noise specifications are based on direct measurement of 1024 consecutive samples.

SBAS414C-JULY 2009-REVISED DECEMBER 2010

Copyright © 2009–2010, Texas Instruments Incorporated

EXAS ISTRUMENTS

SBAS414C -JULY 2009-REVISED DECEMBER 2010

OVERVIEW

The ADS1231 is a precision, 24-bit ADC that includes a low-noise PGA, internal oscillator, third-order delta-sigma ($\Delta\Sigma$) modulator, and fourth-order digital filter. The ADS1231 provides a complete front-end solution for bridge sensor applications such as weigh scales, strain gauges, and pressure sensors.

Data can be output at 10SPS for excellent 50Hz and 60Hz rejection, or at 80SPS when higher speeds are needed. The ADS1231 is easy to configure, and all digital control is accomplished through dedicated pins; there are no registers to program. A simple two-wire serial interface retrieves the data.

ANALOG INPUTS (AINP, AINN)

The input signal to be measured is applied to the input pins AINP and AINN. The ADS1231 accepts differential input signals, but can also measure unipolar signals.

LOW-NOISE AMPLIFIER

The ADS1231 features a low-drift, low-noise amplifier that provides a complete front-end solution for bridge sensors. A simplified diagram of the amplifier is shown in Figure 13. It consists of two chopper-stabilized amplifiers (A1 and A2) and three accurately matched resistors (R_1 , R_{F1} , and R_{F2}) that construct a differential front-end stage with a gain of 128, followed by gain stage A3 (Gain = 1). The inputs are equipped with an EMI filter, as shown in Figure 13. The cutoff frequency of the EMI filter is 20MHz. By using AVDD as the reference input, the bipolar input ranges from -19.5mV to +19.5mV. The inputs of the ADS1231 are protected with internal diodes connected to the power-supply rails. These diodes clamp the applied signal to prevent it from damaging the input circuitry.

Figure 13. Simplified Diagram of the Amplifier

External Capacitor

An external capacitor (C_{EXT}) across the two ADS1231 CAP pins combines with the internal resistor RINT (on-chip) to create a low-pass filter. The recommended value for C_{EXT} is 0.1µF which provides a corner frequency of 720Hz. This low-pass filter serves two purposes. First, the input signal is bandlimited to prevent aliasing by the ADC and to filter out the high-frequency noise. Second, it attenuates the chopping residue from the amplifier to improve temperature drift performance. NPO or COG capacitors are recommended. For optimal performance, place the external capacitor very close to the CAP pins.

VOLTAGE REFERENCE INPUTS (VREFP, VREFN)

The voltage reference used by the modulator is generated from the voltage difference between VREFP and VREFN: $V_{REF} = VREFP - VREFN$. The reference inputs use a structure similar to that of the analog inputs. In order to increase the reference input impedance, switching buffer circuitry is used to reduce the input equivalent capacitance. The reference drift and noise impact ADC performance. In order to achieve best results, pay close attention to the reference noise and drift specifications. A simplified diagram of the circuitry on the reference inputs is shown in Figure 14. The switches and capacitors can be modeled approximately using an effective impedance of:

 $Z_{EFF} = 500 M\Omega$

Figure 14. Simplified Reference Input Circuitry

ESD diodes protect the reference inputs. To prevent these diodes from turning on, make sure the voltages on the reference pins do not go below GND by more than 100mV, and likewise, do not exceed AVDD by 100mV:

GND - 100mV < (VREFP or VREFN) < AVDD + 100mV

LOW-SIDE POWER SWITCH (SW)

The ADS1231 incorporates an internal switch for use with an external bridge sensor, as shown in Figure 15. The switch can be used in a return path for the bridge power. By opening the switch, power dissipation in the bridge is eliminated.

The switch is controlled by the ADS1231 conversion status. During normal conversions, the switch is closed (the SW pin is connected to GND). During standby or power-down modes, the switch is opened (the SW pin is high impedance). When using the switch, it is recommended that the negative reference input (VREFN) be connected directly to the bridge ground terminal, as shown in Figure 15 for best performance.

Figure 15. Low-Side Power Switch

CLOCK SOURCE

The ADS1231 uses an internal oscillator. No external clock circuitry is required.

FREQUENCY RESPONSE

The ADS1231 uses a $sinc^4$ digital filter with the frequency response. The frequency response repeats at multiples of the modulator sampling frequency of 76.8kHz. The overall response is that of a low-pass filter with a -3dB cutoff frequency of 3.32Hz with the SPEED pin tied low (10SPS data rate) and 11.64Hz with the SPEED pin tied high (80SPS data rate).

To help see the response at lower frequencies, Figure 16(a) illustrates the nominal response out to 100Hz, when the data rate = 10SPS. Notice that signals at multiples of 10Hz are rejected, and therefore simultaneous rejection of 50Hz and 60Hz is achieved.

The benefit of using a sinc⁴ filter is that every frequency notch has four zeros on the same location. This response, combined with the low drift internal oscillator, provides an excellent normal-mode rejection of line-cycle interference.

Figure 16(b) zooms in on the 50Hz and 60Hz notches with the SPEED pin tied low (10SPS data rate).

Figure 16. Nominal Frequency Response Out To 100Hz

SETTLING TIME

Fast changes in the input signal require time to settle. For example, an external multiplexer in front of the ADS1231 can generate abrupt changes in input voltage by simply switching the multiplexer input channels. These sorts of changes in the input require four data conversion cycles to settle. When continuously converting, five readings may be necessary in order to settle the data. If the change in input occurs in the middle of the first conversion, four more full conversions of the fully-settled input are required to obtain fully-settled data. Discard the first readings because they four contain only partially-settled data. Figure 17 illustrates the settling time for the ADS1231.

DATA RATE

The ADS1231 data rate is set by the SPEED pin, as shown in Table 2. When SPEED is low, the data rate is nominally 10SPS. This data rate provides the lowest noise, and also has excellent rejection of both 50Hz and 60Hz line-cycle interference. For applications requiring fast data rates, setting SPEED high selects a data rate of nominally 80SPS.

Table 2. Data Rate Settings

SPEED PIN	DATA RATE
0	10SPS
1	80SPS

DATA FORMAT

The ADS1231 outputs 24 bits of data in binary twos complement format. The least significant bit (LSB) has a weight of $(0.5V_{REF}/128)(2^{23} - 1)$. The positive full-scale input produces an output code of 7FFFFFh and the negative full-scale input produces an output code of 800000h. The output clips at these codes for signals exceeding full-scale. Table 3 summarizes the ideal output codes for different input signals.

INPUT SIGNAL V _{IN} (AINP – AINN)	IDEAL OUTPUT
≥ +0.5V _{REF} /128	7FFFFh
(+0.5V _{REF} /128)/(2 ²³ - 1)	000001h
0	000000h
(-0.5V _{REF} /128)/(2 ²³ -1)	FFFFFh
≤ –0.5V _{REF} /128	800000h

1. Excludes effects of noise, INL, offset, and gain errors.

Figure 17. Settling Time in Continuous Conversion Mode

NSTRUMENTS

EXAS

DATA READY/DATA OUTPUT (DRDY/DOUT)

This digital output pin serves two purposes. First, it indicates when new data are ready by going low. <u>Afterwards</u>, on the first rising edge of SCLK, the DRDY/DOUT pin changes function and begins outputting the conversion data, most significant bit (MSB) first. Data are shifted out on each subsequent SCLK rising edge. After all 24 bits have been retrieved, the pin can be forced high with an additional SCLK. It then stays high until new data are ready. This configuration is useful when polling on the status of DRDY/DOUT to determine when to begin data retrieval.

SERIAL CLOCK INPUT (SCLK)

This digital input shifts serial data out with each rising edge. This input has built-in hysteresis, but care should still be taken to ensure a clean signal. Glitches or slow-rising signals can cause unwanted additional shifting. For this reason, it is best to make sure the rise and fall times of SCLK are both less than 50ns.

DATA RETRIEVAL

The ADS1231 continuously converts the analog input signal. To retrieve data, wait until DRDY/DOUT goes low, as shown in Figure 18. After DRDY/DOUT goes low, begin shifting out the data by applying SCLKs. Data are shifted out MSB first. It is not required to shift out all 24 bits of data, but the data must be retrieved before new data are updated (within t_{CONV}) or else the data will be overwritten. Avoid data retrieval during the update period (t_{UPDATE}). If only 24 SCLKs have been applied, DRDY/DOUT remains at the state of the last bit shifted out until it is taken high (see t_{UPDATE}), indicating that new data are being updated. To avoid having DRDY/DOUT remain in the state of the last bit, the 25th SCLK can be applied to force DRDY/DOUT high, as shown in Figure 19. This technique is useful when a host controlling the device is polling DRDY/DOUT to determine when data are ready.

SBAS414C-JULY 2009-REVISED DECEMBER 2010

Figure 18. 24-Bit Data Retrieval Timing

SYMBOL	DESCRIPTION	MIN	ТҮР	MAX	UNITS	
t _{DS}	DRDY/DOUT low to first SCLK rising e	0			ns	
t _{SCLK}	SCLK positive or negative pulse width	100			ns	
t _{PD} ⁽¹⁾	SCLK rising edge to new data bit valid			50	ns	
t _{HT} ⁽¹⁾	SCLK rising edge to old data bit valid: hold time		20			ns
t _{UPDATE}	Data updating: no readback allowed			90		μs
t _{CONV} Conversion time (1/data rate)	Conversion time (1/data rata)	SPEED = 1		12.5		ms
	SPEED = 0			100		ms

(1) Minimum required from simulation.

SBAS414C -JULY 2009-REVISED DECEMBER 2010

STANDBY MODE

Standby mode dramatically reduces power consumption by shutting down most of the circuitry. To enter Standby mode, simply hold SCLK high after DRDY/DOUT goes low; see Figure 20. Standby mode can be initiated at any time during readback; it is not necessary to retrieve all 24 bits of data beforehand.

When t_{STANDBY} has passe<u>d with</u> SCLK held high, Standby mode activates. DRDY/DOUT stays high when Standby mode begins. SCLK must remain high to stay in Standby mode. To exit Standby mode (wakeup), set SCLK low. The first data after exiting Standby mode are valid.

Figure 19. Data Retrieval with DRDY/DOUT Forced High Afterwards

Figure 20. Standby Mode Timing (Can be used for single conversions)

SYMBOL	DESCRIPTION		MIN	ТҮР	MAX	UNITS
(1)	SCLK high after DRDY/DOUT	SPEED = 1			12.44	ms
t _{DSS} ⁽¹⁾	goes low to activate Standby mode	SPEED = 0			99.94	ms
		SPEED = 1	12.5			ms
^I STANDBY	Standby mode activation time	SPEED = 0	100			ms
↓ (1)	Data ready after exiting Standby	SPEED = 1		52.6		ms
t _{S_RDY} ⁽¹⁾	mode	SPEED = 0		401.8		ms

(1) Based on an ideal internal oscillator.

POWER-DOWN MODE

Power-Down mode shuts down the entire ADC circuitry and reduces the total power consumption close to zero. To enter Power-Down mode, simply hold the PDWN pin low. Power-Down mode also resets the entire circuitry. Power-Down mode can be initiated at any time during readback; it is not necessary to retrieve all 24 bits of data beforehand. Figure 22 shows the wake-up timing from Power-Down mode.

Figure 21. Power-Up Timing Sequence

Figure 22. Wake-Up Timing from Power-Down Mode

SYMBOL	DESCRIPTION	MIN	TYP	UNITS
t _{WAKEUP} ⁽¹⁾⁽²⁾	Wake-up time after Power-Down mode		7.95	μS
t _{PDWN} ⁽¹⁾	PDWN pulse width	26		μS

(1) Based on an ideal internal oscillator.

(2) Typical required from simulation.

SBAS414C -JULY 2009-REVISED DECEMBER 2010

APPLICATION EXAMPLE

Weigh Scale System

Figure 23 shows a typical ADS1231 application as part of a weigh scale system.

(1) Place a $0.1\mu F$ or higher capacitor as close as possible on both AVDD and DVDD.

(2) Place capacitor very close to the ADS1231 CAP pins for optimal performance.

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
ADS1231ID	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	Request Free Samples
ADS1231IDR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	Purchase Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*	All	dimensions	are	nominal	

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ADS1231IDR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

7-Jan-2011

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ADS1231IDR	SOIC	D	16	2500	333.2	345.9	28.6

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

4211283-4/E 08/12

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated