

For Immediate Assistance, Contact Your Local Salesperson

FULL TEMPERATURE SPECIFICATIONS

ELECTRICAL

and and and and and a	and the second	ADS605H			ADS605HB			
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	ТҮР	MAX	UNITS
RESOLUTION	A State of the second sec	1.1.2.2		12			•	Bits
ANALOG INPUT Voltage Range Impedance Capacitance			±1.0 1.5 5			:		V MΩ pF
CONVERSION CHARACTERISTICS Sample Rate Range Throughput Rate Pipeline Delay Start Up Time to Rated Accuracy		DC 10	8-S	10 ne Convert C	* * Command P	eriod	:	MHz MHz minute
$\begin{array}{l} \textbf{DC ACCURACY} \\ Integral Linearity Error \\ Differential Linearity Error \\ No Missing Codes \\ Gain Error^{(2,3)} \\ Bipolar Zero Error^{(2)} \\ Power Supply Sensitivity \\ +V_g \\ -V_g \end{array}$			±2.0 ±0.6 Guaranteed 0.9 0.2 ±0.002 ±0.002	-0.99, +1.5 ±1.25 ±0.75 ±0.05 ±0.05	F-CON	±1.7 ±0.5 Guaranteed 0.7 0.1 ±0.001 ±0.001	± 2.5 -0.99, +1.0 ± 1.0 ± 0.3 ± 0.05 ± 0.05	LSB ⁽¹⁾ LSB %FSR % %FSR %FSR
AC ACCURACY Spurious-Free Dynamic Range Total Harmonic Distortion Signal-to-(Noise+Distortion) Ratio Signal-to-Noise Ratio Differential Linearity Error No Missing Codes Full-Power Bandwidth ⁽⁵⁾	nput Signal within 1dB of Full Scale $ \begin{split} f_{t_{BI}} &= 100 \text{kHz} \\ f_{t_{BI}} &= 50 \text{Hz} \\ f_{t_{BI}} &= 50 \text{Hz} \\ f_{t_{BI}} &= 50 \text{Hz} \\ f_{t_{BI}} &= 100 \text{kHz} \\ f_{t_{BI}} &= 50 \text{Hz} \\ f_{t_{BI}} &= 50 \text{Hz} \\ f_{t_{BI}} &= 50 \text{Hz} \end{split} $	73 67 61 60 62 61	78 73 -75 -70 65 63 64 63 ±0.8 Guaranteed 32	-70 -67 -0.99, +1.5	78 71 64 62 65 63	82 76 80 74 67 65 67 64 ±0.6 Guaranteed	-75 -70 ±0.85	dBFS ⁽⁴⁾ dBFS dBFS dBFS dBc dBc dBc dB dB LSB
SAMPLING DYNAMICS Aperture Delay Aperture Jitter Overvoltage Recovery ⁽⁶⁾			1.0 3 96	10AX04	9 910 1	:T 28-PI	0A9M03	ns ps rms ns
CONVERT INPUT Pulse Width Logic Levels in the logic point of Vil. Vil. Vil. Jil. Jil. Jil. Jil.	finemity Both DC and dy guaranteed. The ADS605 is packaged	30 0.15 +2.0	ling anal sk/hold, e wideba	42 +0.8 V_{p} + 0.15 ±750 ±750	DN performi mplete v ternal ti	ile a high verter co verter co i hac in vert	ESCR ADS603 tgital con to returent tottold to	ns V V μΑ
DIGITAL OUTPUTS Data Format Data Coding V _{OL} V _{OL}	Indiana della consecta della consect	+2.4	YCELLE pecificant different	Paralle Binary Two': +0.5	el 12-bits s Complem	ent	ist, no ci QUIST I spu≛ous	don VIA Dofil V V
POWER SUPPLIES Specified Performance +V _s +I _s -V ₅ -I _s	BOULDE L	+4.75 -5.46	+5 +60 -5.2 -200	+5.25 +100 -4.75 +220		:		V mA V mA
Power Dissipation TEMPERATURE RANGE Specified Performance θ _{jc} θ _{jc} θ _{jc}	Case Temperature Junction-to-Case Case-to-Ambient	•	1.35 2014 2014 10 28	+70	MaB Dash Encode	Line Second	1.5	W 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NOTES: (1) LSB means Least Significant Bit. For the 12-bit, ±1.0V input ADS605, one LSB is 488µV. (2) Adjustable to zero with external potentiometer. (3) Gain error scale error is the worst case of -Full Scale or +Full Scale untrimmed deviation from ideal first and last code transitions, divided by the transition voltage (not divided by the full-scale range) and includes the effect of offset error. (4) dBFS is dB relative to a full-scale ±1.0V input. (5) Full-Power Bandwidth defined as the –3dB frequency of the Track/Hold referred to as Full Scale. (6) Recovers to specified performance after 2 x FS input overvoltage.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

עמיים הם השמימות אות לגדעה האת מהייה. מהגמה גם הגדע לאמי אלהייזאנה אולה איריים איירים איירים מאירובי "אומני שהל להאלה אולמעד יכנול האת המאלק לא הינושי גם שרץ כל ההגלוג מנוכילאם לאלוד היה יליקוע ביר מהיינים אייר לגנו הפרא שלא מדר גם הראשה אוד היק שלאיי פארטנאין הימובן ההם ההוהי הקולטר מצוינים באומינה בירוט קצומים.

T = 0°C to +70°C case temperature, fs = 10MHz, +Vs = +5V, -Vs = -5.2V, convert command "high" pulse width = 42ns, unless otherwise specified.

TYPICAL PERFORMANCE CURVES (CONT)

ADS605 2 A/D CONVERTERS, DATA ACQUISITION COMPONENTS 60

0

20

Temperature (°C)

40

TABLE	I.	Timing	Speci	fications.
-------	----	--------	-------	------------

THEORY OF OPERATION

The ADS605 is a two-step subranging analog-to-digital converter. Conceptually, the subranging technique is simple: sample and hold the input signal, convert to digital with a coarse ADC, convert back to analog with a coarse-resolution (but high accuracy) DAC, subtract this voltage from the T/H output, amplify this "remainder," convert to digital with second coarse ADC, and combine the digital output from the first ADC with the digital output from the second ADC. In practice, however achieving high conversion speed without sacrificing accuracy is a difficult task.

The analog input signal is sampled by a high-speed track/ hold amplifier with low distortion, fast acquisition time and very low aperture uncertainty (jitter).

Internal timing circuits (ECL logic is used internally) supply all the critical timing signals necessary for proper operation of the ADS605. Timing signals are laser-trimmed for both pulse width and delay. ECL logic is used internally for its speed, low noise characteristics and timing delay stability over a wide range of temperatures and power supply voltages.

The ADS605 timing technique generates a variable width T/H gate pulse which is determined by the conversion command pulse period minus a fixed 70ns ADC conversion time. ADS605 conversion rates are therefore possible somewhat above the 10MSPS specification but acquisition time is sacrificed and accuracy is rapidly degraded.

(Exact Center of Code)	OUTPUT CODING				
+FS (+1.0V)	01111111111				
+FS – 1LSB	01111111111				
+FS – 2LSB	01111111110				
+3/4 Full Scale	01100000000				
+1/2 Full Scale	01000000000				
+1/4 Full Scale	00100000000				
+1LSB	00000000001				
Bipolar Zero (0V)	00000000000				
-1LSB	111111111111				
-1/4 Full Scale	11100000000				
-1/2 Full Scale	11000000000				
-3/4 Full Scale	10100000000				
-FS - 1LSB	10000000001				
-FS (-1.0V)	10000000000				
	MSB LSB				

BINARY TWO'S

TABLE II. Coding Table for the ADS605. One LSB = 488μ V.

DISCUSSION OF PERFORMANCE

DYNAMIC PERFORMANCE TESTING

The ADS605 is a very high performance converter and careful attention to test techniques is necessary to achieve accurate results. Spectral analysis by application of a fast Fourier transform (FFT) to the ADC digital output will provide data on all important dynamic performance parameters: spurious free dynamic range (SFDR), signal-to-noise ratio (SNR), signal-to-noise-and-distortion ratio (SINAD), and intermodulation distortion (IMD).

Highly accurate phase-locked signal sources allow high resolution coherent FFT measurements to be made without using window functions. By choosing appropriate signal frequencies and sample rates, an odd integral number of signal frequency periods can be sampled. Because no spectral leakage results, a rectangular window (no window function) can be used. This was used to generate the typical FFT performance curves.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

If generators cannot be phase-locked and set to extreme accuracy, every low side-lobe window must be applied to the digital data before executing an FFT. A commonly used window such as the Hanning window is not appropriate for testing high performance converters; a minimum four-sample Blackman-Harris window is strongly recommended. To assure that the majority of codes are exercised in the ADS605, a minimum 4096 point FFT should be taken.

APPLICATIONS

The following points must be followed carefully in order to accurately test the precision ADS605:

- 1. The ADC analog input must not be overdriven. Using a signal amplitude slightly lower than FSR will allow a small amount of "headroom" so that noise or DC offset voltage will not overrange the AC+DC and "hard limit" on signal peaks.
- 2. Two-tone tests can produce signal envelopes that exceed FSR. Set each test signal to slightly less than -6dB to prevent "hard limiting" on peaks.
- 3. Two-tone testing will require isolation between test signal generators to prevent IMD generation in the test generator output circuits. An active summing amplifier

using an OPA642 is shown in Figure 2. This circuit will provide excellent performance from DC to 10MHz with harmonic and intermodulation components typically better than -85dBc. A passive (hybrid transformer) signal combiner can also be used (Figures 3 and 4) over a range of about 0.1MHz to 30MHz. This combiner's port-to-port isolation will be approximately 45dB between signal generators and its input-output insertion loss will be about 6dB. Distortion will be better than -85dBc for the powdered-iron core specified.

ADS605

402Ω AA/ Optional transmission line back-termination resistor increases insertion loss by 6dB. 50Ω In (O \mathcal{M} +5V 49.9Ω 50Ω OPA642 \sim Output 4020 50Ω In (O \mathcal{M} \leq -5V FIGURE 2. Active Signal Combiner. ·III _ _ _ _ _ _ • 0000

FIGURE 4. Transformer Details.

BURR - BROWN

10 turns #26 AWG bifilar wound on AMIDON FT50-43 core

For Immediate Assistance, Contact Your Local Salesperson

- 4. The signal source must be filtered to provide a clean, harmonic-free input to the ADS605. This signal source must have exceptional noise performance to achieve accurate SNR measurements.
- 5. The analog input of the ADS605 should be terminated directly at the input pin sockets with the correct filter terminating impedance (50Ω or 75Ω), or it should be driven by a low output impedance buffer such as an OPA642. Short leads are necessary to prevent digital noise pickup.
- 6. The convert command must be generated form a low jitter source. The convert command high time can range from 30ns to 42ns. A 50% convert command duty cycle will lead to excessive noise coupling in the converter. A high jitter convert command source will add significant noise to the system results. An HP8644A generator is a good clock source. Short leads are necessary to preserve fast TTL rise times.
- 7. The digital data at the output of the ADS605 must be buffered externally prior to latching. A buffered TTL 12bit register such as two 74F574s is recommended. This data can be latched using the DATA STROBE pulse or the convert command pulse. The latches should be mounted on PC boards in very close proximity to the ADS605. Avoid long leads.
- 8. A well-designed, clean PC board layout will assure proper operation and clean spectral response. Proper grounding and bypassing, short lead lengths, separation of analog and digital signals, and the use of ground planes are particularly important for high frequency circuits. Multilayer PC boards are recommended for best performance, but a two-sided PC board with large, heavy ground planes can give excellent results, if carefully designed.
- Prototyping "plug boards" or wire-wrap boards will not be satisfactory.

- 10. Connect analog and digital ground pins of the ADS605 directly to the ground plane. In our experience, connecting these pins to a common ground plane gives the best results. Analog and digital power supply commons should be tied together at the ground plane.
- 11. Power supplies should be bypassed with $0.1\mu F$ and $2.2\mu F$ capacitors. The $0.1\mu F$ monoblock capacitors should be placed on the topside of the PC board as close to the pin as your manufacturing process allows.
- 12. If using a cable to drive the input of the ADS605, avoid reflections down the cable that could degrade dynamic performance by placing a 3dB attenuator at the end of the cable. The input amplitude may be doubled to maintain signal amplitude.

OFFSET AND GAIN ADJUSTMENT

The ADS605 is carefully laser-trimmed to achieve its rated accuracy without external adjustments. If desired, both gain error and input offset voltage error may be trimmed to zero with external potentiometers by using the application circuits in Figure 5. Trim range is typically $\pm 2.0\%$ for gain and $\pm 2.0\%$ for offset. If gain and offset trim is not used, pins 21 and 22 should be grounded.

THERMAL REQUIREMENTS

The ADS605 is tested and specified over a case temperature range of 0°C to +70°C. The converter is tested in a forcedair environment with a 10 SCFM air flow. At extended temperatures, heat sinking may be required. The thermal resistances (θ_{IC} and θ_{CA}) of the ADS605 package are 10°C/W and 28°C/W, respectively, measured to the underside of the case.

FIGURE 7. DEM-ADS605 Top PCB Layer. Analog Ground Plane, Top View.

FIGURE 9. DEM-ADS605 Bottom PCB Layer. Interconnect, Top View.

