

Low Noise, Precision Instrumentation Amplifier

AMP-01

FEATURES

•	Low Offset Voltage	50μV Max
	Very Low Offset Voltage Drift	•
•	Low Noise	$0.12 \mu V_{p-p}$ (0.1 Hz to 10Hz)
	Excellent Output Drive	
•	Capacitive Load Stability	to 1μF
•	Gain Range	0.1 to 10,000
•	Excellent Linearity	16-Bit at G = 1000
•	High CMR	125dB Min (G = 1000)
•	Low Bias Current	4nA Max
•	May be Configured as a Precision	n Op-Amp

- Output-Stage Thermal Shutdown
- Available in Die Form

ORDERING INFORMATION†

	PACKAGE	OPERATING			
CERDIP 18-PIN	LCC	PLASTIC 20-PIN	TEMPERATURE RANGE		
AMP01AX*	_	_	MIL		
AMP01BX*	AMP01BTC/883		MIL		
AMP01EX	_		IND		
AMP01FX	_	_	IND		
	_	AMP01GS††	СОМ		

- For devices processed in total compliance to MIL-STD-883, add /883 after part number. Consult factory for 883 data sheet.
- Burn-in is available on commercial and industrial temperature range parts in CerDIP, plastic DIP, and TO-can packages
- tt For availability and burn-in information on SO and PLCC packages, contact your local sales office.

PIN CONNECTIONS

SIMPLIFIED SCHEMATIC

Manufactured under the following U.S. patents: 4,471,321 and 4,503,381.

GENERAL DESCRIPTION

The AMP-01 is a monolithic instrumentation amplifier designed for high-precision data acquisition and instrumentation applications. The design combines the conventional features of an instrumentation amplifier with a high-current output stage. The output remains stable with high capacitance loads $(1\mu F)$, a unique ability for an instrumentation amplifier. Consequently, the AMP-01 can amplify low-level signals for transmission through long cables without requiring an output buffer. The output stage may be configured as a voltage or current generator.

Input offset voltage is very low $(20\mu\text{V})$ which generally eliminates the external null potentiometer. Temperature changes have minimal effect on offset; TCV_{IOS} is typically $0.15\mu\text{V}/^{\circ}\text{C}$. Excellent low-frequency noise performance is achieved with a minimal compromise on input protection. Bias current is very low, less than 10nA over the military temperature range. High common-mode rejection of 130dB, 16-bit linearity at a gain of 1000, and 50mA peak output current are achievable simultaneously. This combination takes the instrumentation amplifier one step further towards the ideal amplifier.

AC performance complements the superb DC specifications. The AMP-01 slews at $4.5 \text{V}/\mu\text{s}$ into capacitive loads of up to 15nF, settles in $50\mu\text{s}$ to 0.01% at a gain of 1000, and boasts a healthy 26MHz gain-bandwidth product. These features make the AMP-01 ideal for high-speed data-acquisition systems.

Gain is set by the ratio of two external resistors over a range of 0.1 to 10,000. A very low gain-temperature-coefficient of 10ppm/°C is achievable over the whole gain range. Output voltage swing is guaranteed with three load resistances; $50\Omega,500\Omega,$ and $2k\Omega.$ Loaded with $500\Omega,$ the output delivers $\pm\,13.0V$ minimum. A thermal shutdown circuit prevents destruction of the output transistors during overload conditions.

The AMP-01 can also be configured as a high-performance operational amplifier. In many applications, the AMP-01 can be used in place of op-amp/power-buffer combinations.

THEORY OF OPERATION

An instrumentation amplifier, unlike an op amp, requires precise internal feedback. The two techniques presently in use are resistive and current feedback.

The AMP-01 employs the current feedback approach which has significant advantages over resistive feedback. Advantages of current-feedback are:

- a. The technique yields a very high common-mode rejection ratio. The AMP-01 CMR is in excess of 130dB at a gain of 1000.
- b. The gain of the current feedback design is set by the ratio of two external resistors. Using external resistors allows any practical gain to be set with high precision and very low gain temperature coefficient.

c. The current-feedback design is immune to CMR degradation when series resistance is added to the reference input. A small (trimmable) offset change results from added resistance, e.g. a printed circuit track.

The AMP-01 utilizes low-drift thin-film resistors to minimize output offset temperature drift. A feedback voltage-to-current converter is employed having high linearity and low noise, particularly at low frequencies. Parameter shifts during packaging are eliminated by a post-assembly trimming technique which electronically adjusts the output offset voltage.

The AMP-01 input transistors Q1 and Q2 feed active loads, yielding stage gain in excess of 4000 (see simplified schematic) The output amplifier, A1, is a two-stage design having a gain of about 50,000 driving a 100 Ω load. Overall gain of 2 \times 10 8 yields excellent linearity, even at high closed-loop gains.

Low bias current is achieved by using Ion-implanted superbeta transistors combined with a new bias-current cancellation system, patents applied for. Input bias current remains below 10nA over the military temperature range, -55° C to $+125^{\circ}$ C.

Superbeta transistors use a new transistor geometry resulting in an input noise of only $5 \text{nV}/\sqrt{\text{Hz}}$ at G = 1000. Noise includes contributions from the gain-setting resistor and internal overload-protection resistor. The input stage achieves an offset voltage drift of less than $0.3 \mu \text{V/}^{\circ}\text{C}$ (E Grade).

The AMP-01 uses a unique two-pole compensation scheme where the load capacitance is incorporated into the dominate pole. Stable operation results even with high capacitance loads. The high output current capability (90mA peak) allows the 4.5V/ μ s slew-rate to be maintained with load capacitance as high as 15nF.

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage			±18V
Common-Mode Input Vo			
Differential Input Voltage	e, $R_{\alpha} \ge 2k\Omega$		±20V
	$R_F^G < 2k\Omega \dots$		
Output Short-Circuit Dur	ration		Indefinite
Storage Temperature R			
Operating Temperature	Range		
AMP-01A, B		55°C	to +125°C
AMP-01E, F	·····	25°C	to +85°C
AMP-01G		0°C	to +70°C
Lead Temperature (Solo	dering, 60 sec)		300°C
Junction Temperature (
PACKAGE TYPE	Θ _{JA} (Note 2)	Θ _{jC}	UNITS
18-Pin Hermetic DIP (Z)	79	11	°C/W
28-Contact LCC (TC)	78	30	°C/W
20-Pin SOL (S)	88	25	°C/W

- Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.
- Θ_{jA} is specified for worst case mounting conditions, i.e., Θ_{jA} is specified for device in socket for CerDIP and LCC packages; Θ_{jA} is specified for device soldered to printed circuit board for SOL package.

NOTES:

ELECTRICAL CHARACTERISTICS at $V_S=\pm\,15V$, $R_S=10k\Omega$, $R_L=2k\Omega$, $T_A=25^{\circ}$ C, unless otherwise noted.

				MP-01			MP-01		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OFFSET VOLTAGE		and the second s							
Input Offset Voltage	V _{IOS}	T _A = 25°C	_	20	50	_	40	100	μ٧
Input Onset Voltage		-55° C ≤ T _A ≤ +125° C		40	80		60	150	
Input Offset Voltage Drift	TCV _{IOS}	-55° C \leq T _A \leq $+125^{\circ}$ C	_	0.15	0.3	Section	0.3	1.0	μV/°C
Output Offeet Voltage	11	T _A = 25°C	_	1	3		2	6	mV
Output Offset Voltage	V _{oos}	-55° C ≤ T _A ≤ + 125° C	<u> </u>	3	6		6	10	
Output Offset Voltage Drift	TCVoos	R _G = ∞	_	20	50	_	50	120	μV/° C
Catput Chock Voltage Dillit		-55° C ≤ T _A ≤ +125° C							, , , o
		G = 1000	120	130		110	120		
		G = 100	110	130	_	100	120	_	dB
		G = 10	95 75	110	_	90	100	_	
Offset Referred to Input	PSR	G = 1	75	90		70	80		
vs. Positive Supply		-55 ° C \leq T _A \leq $+125$ ° C							
V + = +5V to +15V		G = 1000	120	130		110	120	_	
		G = 100	110	130	-	100	120		dB
		G = 10	95	110	_	90	100	_	42
		G = 1	75	90	_	70	80		
		G = 1000	105	125	_	105	115	_	
		G = 100	90	105	_	90	95	_	-ID
		G = 10	70	85	_	70	75		dB
Offset Referred to Input		G = 1	50	65	_	50	60	_	
vs. Negative Supply	PSR	-55° C \leq T _A \leq $+125^{\circ}$ C						"	
V = -5V to $-15V$		G = 1000	105	125	_	105	115	_	
		G = 1000	90	105	_	90	95	_	
		G = 10	70	85		70	75	****	dB
		G = 1	50	65	and the same of th	50	60	1 100 11	
Innut Offeet Veltage Trim							****		
Input Offset Voltage Trim Range		$V_S = \pm 4.5 V \text{ to } \pm 18 V$ (Note 1)	_	± 6	_	_	± 6	_	mV
		$V_S = \pm 4.5 \text{V to } \pm 18 \text{V}$							
Output Offset Voltage Trim Range		(Note 1)	_	±100	_	_	\pm 100	_	mV
		(Note 1)		-					
INPUT CURRENT									
Innut Bigs Current	I_	$T_A = 25^{\circ}C$	·	1	4		2	6	nA
Input Bias Current	l _B	-55° C ≤ T _A ≤ +125° C	-	4	10		6	15	117
Input Bias Current Drift	TCIB	-55° C \leq T _A \leq + 125 $^{\circ}$ C	-	40			50		pA/°C
		T _A = 25°C	_	0.2	1.0	_	0.5	2.0	m A
Input Offset Current	os	$-55^{\circ}\mathrm{C} \le T_A \le +125^{\circ}\mathrm{C}$	_	0.5	3.0		1.0	6.0	nA
Input Offset Current Drift	TCIOS	-55° C ≤ T _A ≤ + 125° C	<u>-</u>	3	_	_	5	_	pA/°C
INPUT									
		Differential, G = 1000		1			1		
Input Resistance	R _{IN}	Differential, G ≤ 100	_	10	_	_	10	_	GΩ
input Resistance	n IN	Common-Mode, G = 1000	_	20	_		20		(111
Input Voltage Range	IVR	$T_A = 25^{\circ} \text{C (Note 2)}$	± 10.5 ± 10.0		_	±10.5 ±10.0	_	_	٧
		55° C ≤ T _A ≤ + 125° C	<u> </u>			10.0			
		$V_{CM} = \pm 10V$, $1k\Omega$ source imbalance							
		G = 1000	125	130	_	115	125	_	
		G = 1000	120	130	_ ·	110	125	_	
		G = 10	100	120	_	95	110	_	dB
						75	90		
Common-Mode	CMR	G = 1	85	100			90		
Rejection		$-55^{\circ} \text{ C} \le \text{T}_{\text{A}} \le +125^{\circ} \text{ C}$							
		G = 1000	120	125	_	110	120	_	
		G = 100	115	125	_	105	120	_	dB
		G = 10	95	115	_	90	105	_	U.D
			80	95		75	90		

NOTES:

1

V_{IOS} and V_{OOS} nulling has minimal affect on TCV_{IOS} and TCV_{OOS}, respectively.

^{2.} Refer to section on common-mode rejection.

AMP-01 **ELECTRICAL CHARACTERISTICS** at $V_S = \pm 15V$, $R_S = 10k\Omega$, $R_L = 2k\Omega$, $T_A = +25^{\circ}C$, $-25^{\circ}C \le T_A \le +85^{\circ}C$ for E,F grades, $0^{\circ}C \le T_A \le +70^{\circ}C$ for G grade,unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	A MIN	MP-01E	MAX	MIN	MP-01F/ TYP	G Max	UNITS
OFFSET VOLTAGE									
Input Officet Voltage	· · · · · · · · · · · · · · · · · · ·	T _A = +25°C		20	50		40	100	
Input Offset Voltage	V _{IOS}	$T_{MIN} \le T_A \le T_{MAX}$	_	40	80	_	60	150	μV
Input Offset Voltage Drift	TCV _{IOS}	$T_{MIN} \le T_A \le T_{MAX}$ (Note 2)	_	0.15	0.3		0.3	1.0	μV/°C
Output Offset Voltage	V _{oos}	$T_{A} = +25^{\circ}C$ $T_{MIN} \le T_{A} \le T_{MAX}$		1 3	3 6	_	6	6 10	mV
Output Offset Voltage Drift	TCVoos	RG = ∞ (Note 2) T _{MIN} ≤ T _A ≤ T _{MAX}	_	20	100	_	50	120	μV/°C
		G = 1000	120	130	-	110	120	_	
		G = 100	110	130	_	100	120	-	dB
		G = 10 G = 1	95 75	110 90	_	90 70	100 80		
Offset Referred to Input	PSR		/5			70			
vs. Positive Supply $V+ = +5V$ to $+15V$		T _{MIN} ≤T _A ≤T _{MAX} G = 1000	120	130	_	110	120		
V+ = +5V 10 +15V		G = 1000	110	130	_	100	120	_	
		G = 10	95	110		90	100	_	dB
		G == 1	75	90	-	70	80	-	
		G = 1000	110	125	_	105	115	-	
		G = 100	95	105	_	90	95	_	dB
		G = 10	75	85	-	70	75	-	ub
Offset Referred to Input	PSR	G = 1	55	65		50	60	-	
vs. Negative Supply	ran	$T_{MIN} \le T_A \le T_{MAX}$ $G = 1000$							
V = -5V to $-15V$			110	125	-	105	115	_	
		G = 100 G = 10	95 75	105 85	_	90	95	_	dΒ
		G = 10	75 55	65	_	70 50	75 60	_	
Input Offset Voltage Trim Range		V _S = ±4.5V to ±18V (Note 1)		±6	_	_	±6		mV
Output Offset Voltage Trim Range	-	V _S = ±4.5V to ±18V (Note 1)	****	±100	-	_	±100		mV
INPUT CURRENT		-							
Input Bias Current	l _B	$T_{A} = +25^{\circ}C$ $T_{MIN} \le T_{A} \le T_{MAX}$		1 4	4 10	_	2	6 15	mV
Input Bias Current Drift	TCIB	$T_{MIN} \le T_A \le T_{MAX}$	_	40			50		pA/°C
Input Blas Guirent Blitt									- Prv 0
Input Offset Current	l _B	$T_{A} = +25^{\circ}C$ $T_{MIN} \le T_{A} \le T_{MAX}$	_	0.2 0.5	1.0 3.0	_	0.5 1.0	2.0 6.0	mV
Input Offset Current Drift	TCI _{os}	$T_{MIN} \le T_A \le T_{MAX}$	_	3	_	_	5	_	pA/°C
INPUT									
		Differential, G = 1000	_	1	_		1	_	
Input Resistance	R _{iN}	Differential, G≤100		10	-	***	10	-	$G\Omega$
		Common-Mode, G = 1000	_	20	_	_	20	_	
Input Voltage Range	IVR	$T_A = +25$ °C (Note 3) $T_{MIN} \le T_A \le T_{MAX}$	±10.5 ±10.0	_	-	±10.5 ±10.0	_		V
		$V_{OM} = \pm 10V, 1k\Omega$							
		source imbalance							
		G = 1000	125	130	_	115	125	-	
		G = 100	120	130	-	110	125	-	ďΒ
		G = 10	100	120	_	95 75	110	-	
Common-Mode	CMR	G = 1	85	100		75	90		
Rejection		$T_{MIN} \leq T_A \leq T_{MAX}$ $G = 1000$							
			120	125	-	110	120	_	
		G = 100	115	125	_	105	120	-	dB
		G = 10 G = 1	95 80	115 95	_	90 75	105 90	_	
		(2 = 1	80	95	_	/5	90	-	

NOTES:

^{1.} $\rm V_{IOS}$ and $\rm V_{OOS}$ nulling has minimal effect on TCV $_{IOS}$ and TCV $_{OOS}$ respectively.

^{2.} Sample tested.

^{3.} Refer to section on common-mode rejection.

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $R_S = 10k\Omega$, $R_L = 2k\Omega$, $T_A = 25^{\circ}$ C, unless otherwise noted.

•		AMP-01A/E			ΔR				
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	/IP-01B/ TYP	MAX	UNITS
GAIN									
GAIN									
Onin Equation		$G = \frac{20 \times R_S}{R_G}$							
Gain Equation			_	0.3	0.6	_	0.5	0.8	%
Accuracy		Accuracy Measured							
		from G = 1 to 1000							
Gain Range	G		0.1	_	10k	0.1		10k	V/V
		G = 1000	_	0.0007	0.005	_	0.0007	0.005	
Nonlinearity		G = 100 G = 10 (Note 1)	*****	_	0.005	_	_	0.005	%
,			_	_,	0.005		*****	0.007	
		G = 1	***		0.010			0.015	
Temperature Coefficient	G _{TC}	$1 \le G \le 1000$	_	5	10	_	5	15	ppm/°C
Temperature Coembient	Стс	(Notes 1, 2)						10	ррии О
OUTPUT RATING									
		$R_L = 2k\Omega$	± 13.0	±13.8		± 13.0	±13.8		
Output Vallage		$R_L = 500\Omega$	±13.0	\pm 13.5	_	\pm 13.0	\pm 13.5	_	٧
Output Voltage	V_{OUT}	$R_L = 50\Omega$	± 2.5	±4.0	-	±2.5	±4.0	_	
Swing		$R_1 = 2k\Omega$ Over Temp.	± 12.0	±13.8		± 12.0	± 13.8	_	
		$R_L = 500\Omega$ (Note 3)	± 12.0	±13.5	_	± 12.0	± 13.5	_	V
Positive Current Limit		Output-to-Ground Short	60	100	120	60	100	120	mA
Negative Current Limit			60	90	120	60	90	120	
negative Current Limit		Output-to-Ground Short			120	- 00	90	120	mA
Capacitive Load Stability		1 ≤ G ≤ 1000 No Oscillations, (Note 1)	0.1	1	_	0.1	1	Married	μF
Thermal Shutdown		Junction Temperature	_	165	_	_	165	_	°C
Temperature									
NOISE									
		$f_O = 1 \text{kHz}$							
		G = 1000	_	5	_	_	5		
Voltage Density, RTI	en	G = 100	_	10	_	_	10	_	nV/√Hz
		G = 10	_	59	_	_	59	_	
		G = 1		540			540		
Noise Current Density, RTI	in	$f_{O} = 1 \text{kHz}, G = 1000$	_	0.15	_	_	0.15	_	pA/√Hz
		0.1Hz to 10Hz							
		G = 1000		0.12	_	_	0.12	_	
Input Noise Voltage	e _{np-p}	G = 100	***	0.16			0.16	*****	μV _{p-p}
		G = 10	_	1.4		_	1.4	_	
		G = 1		13			13	_	
Input Noise Current	i _{np-p}	0.1Hz to 10Hz, G = 1000	_	2			2		pA _{p-p}
DYNAMIC RESPONSE							The state of the s	/	
		G = 1		570	_	_	570		
Small-Signal		G = 10	_	100	_	_	100	_	
Bandwidth (-3dB)	BW	G = 100	_	82	_	_	82	_	kHz
Danaman (Odb)		G = 1000	_	26	_	_	26	_	
Slew Rate	SR	G = 10	3.5	4.5		3.0	4.5		V/μs
	<u> </u>								,
		To 0.01%, 20V step G = 1	_	12	_	_	12	_	
Settling Time	t_S	G = 10	_	13	_	_	13	_	
	*8								μs
		G = 100	_	15	_	_	15	_	•

NOTES:
 Guaranteed by design.
 Gain tempco does not include the effects of gain and scale resistor tempco match.
 -55°C ≤ T_A ≤ +125°C for A/B grades, -25°C ≤ T_A ≤ +85°C for E/F grades, 0°C ≤ T_A ≤ 70°C FOR G grades.

AMP-01 **ELECTRICAL CHARACTERISTICS** at $V_S=\pm 15V$, $R_S=10k\Omega$, $R_L=2k\Omega$, $T_A=25^{\circ}$ C, unless otherwise noted.

		-	Al	ЛР-01A	/E	AM	P-01B/	F/G	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
SENSE INPUT									
Input Resistance	R _{IN}		35	50	65	35	50	65	kΩ
Input Current	I _{IN}	Referenced to V-	_	280		_	280		μΑ
Voltage Range		(Note 1)	10.5		+15	-10.5		+ 15	V
REFERENCE INPUT									
Input Resistance	R _{IN}		35	50	65	35	50	65	kΩ
Input Current	I _{IN}	Referenced to V-		280	_	_	280		μΑ
Voltage Range		(Note 1)	-10.5	_	+15	-10.5	_	+ 15	V
Gain to Output			_	1	_	_	1	_	V/V
POWER SUPPLY -25° C ≤ T	A ≤ +85°C for E/F C	Grades, −55°C ≤ T _A ≤ + 125°C 1	or A/B Grades						
Supply Voltage Range	V _S	+V linked to +V _{OP} -V linked to -V _{OP}	±4.5	_	±18	±4.5	_	±18	V
Quiescent Current	IQ	+V linked to +V _{OP} -V linked to -V _{OP}	_	3.0 3.4	4.8 4.8	_	3.0 3.4	4.8 4.8	mA

NOTE:
1. Guaranteed by design.

DICE CHARACTERISTICS

DIE SIZE 0.111 \times 0.149 inch, 16,539 sq. mils (2.82 \times 3.78 mm, 10.67 sq. mm)

- 1. R_G
 2. R_G
 3. -INPUT
 4. V_{OOS} NULL
 5. V_{OOS} NULL
 6. TEST PIN*
 7. SENSE
 8. REFERENCE
 9. OUTPUT 10. V- (OUTPUT)
 11. V12. V+
 13. V+ (OUTPUT)
 14. Rs
 15. Rs
 16. V_{IOS} NULL
 17. V_{IOS} NULL
 18. + INPUT

* Make no electrical connection

WAFER TEST LIMITS at $V_S=\pm 15V$, $R_S=10k\Omega$, $R_L=2k\Omega$, $T_A=25^{\circ}C$, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	AMP-01NBC	AMP-01GBC	UNITS
Input Offset Voltage	V _{IOS}	J. W.M. Carrier	60	120	μV MAX
Output Offset Voltage	Voos		4	8	mV MAX
Offset Referred to Input	PSR	V+ = +5V to +15V G = 1000 G = 100	120 110	110 100	dB MIN
,		G = 10 G = 1	95 75	90 70	
Offset Referred to Input vs. Negative Supply	PSR	V-=-5V to -15V G = 1000 G = 100 G = 10 G = 1	105 90 70 50	105 90 70 50	dB MIN
Input Bias Current	I _B		4	8	nA MAX
Input Offset Current	los		1	3	nA MAX
Input Voltage Range	iVR	Guaranteed by CMR Tests	±10	±10	V MIN
Common-Mode Rejection	CMR	$V_{CM} = \pm 10V$ $G = 1000$ $G = 100$ $G - 10$ $G = 1$	125 120 100 85	115 110 95 75	dB MIN
Gain Equation Accuracy		$G = \frac{20 \times R_S}{R_G}$	0.6	0.8	% MAX
Output Voltage Swing	V _{OUT}	$R_{L} = 2k\Omega$ $R_{L} = 500\Omega$ $R_{L} = 50\Omega$	±13 ±13 ±2.5	± 13 ± 13 ± 2.5	V MIN
Output-Current Limit	· -	Output-to-Ground Short	±60	±60	mA MIN
Output-Current Limit		Output-to-Ground Short	± 120	± 120	mA MAX
Quiescent Current	IQ	+V Linked to +V _{OP} -V Linked to -V _{OP}	4.8	4.8	mA MAX

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

PARAMETER	SYMBOL	CONDITIONS	AMP-01NBC TYPICAL	AMP-01GBC TYPICAL	UNITS
Input Offset Voltage Drift	TCV _{IOS}		0.15	0.30	μV/°C
Output Offset Voltage Drift	TCV _{OOS}	R _G = ∞	20	50	μV/°C
Input Bias Current Drift	TCIB		40	50	pA/°C
Input Offset Current Drift	TCI _{OS}		3	5	pA/°C
Nonlinearity		G = 1000	0.0007	0.0007	%
Voltage Noise Density	e _n	G = 1000 f _O = 1kHz	5	5	nV/√Hz
Current Noise Density	in	G = 1000 f _O = 1kHz	0.15	0.15	pA/√Hz
Voltage Noise	e _{np-p}	G = 1000 0.1Hz to 10Hz	0.12	0.12	μV_{p-p}
Current Noise	np-p	G = 1000 0.1Hz to 10Hz	2	2	pA _{p-p}
Small-Signal Bandwidth (-3dB)	BW	G = 1000	26	26	kHz
Slew Rate	SR	G = 10	4.5	4.5	V/μs
Settling Time	t _S	To 0.01%, 20V Step G = 1000	50	50	μs

TYPICAL PERFORMANCE CHARACTERISTICS

INPUT OFFSET VOLTAGE

INPUT BIAS CURRENT

AMP-01
TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

INPUT AND OUTPUT OFFSET VOLTAGES

Instrumentation amplifiers have independent offset voltages associated with the input and output stages. While the initial offsets may be adjusted to zero, temperature variations will cause shifts in offsets. Systems with auto-zero can correct for offset errors, so initial adjustment would be unnecessary. However, many high-gain applications don't have auto zero. For these applications, both offsets can be nulled, which has minimal effect on TCV_{IOS} and TCV_{OOS} .

The input offset component is directly multiplied by the amplifier gain, whereas output offset is independent of gain. Therefore, at low gain, output-offset-errors dominate, while at high gain, input-offset-errors dominate. Overall offset voltage, V_{OS}, referred to the output (RTO) is calculated as follows:

where V_{IOS} and V_{OOS} are the input and output offset voltage specifications and G is the amplifier gain. Input offset nulling alone is recommended with amplifiers having fixed gain above 50. Output offset nulling alone is recommended when gain is fixed at 50 or below.

In applications requiring both initial offsets to be nulled, the input offset is nulled first by short-circuiting $R_{\rm G}$, then the output offset is nulled with the short removed.

The overall offset voltage drift TCV_{OS} , referred to the output, is a combination of input and output drift specifications. Input offset voltage drift is multiplied by the amplifier gain, G, and summed with the output offset drift;

$$TCV_{OS}(RTO) = (TCV_{IOS} \times G) + TCV_{OOS}$$
(2)

where TCV_{IOS} is the input offset voltage drift, and TCV_{OOS} is the output offset voltage specification. Frequently, the amplifier drift is referred back to the input (RTI) which is then equivalent to an input signal change;

$$TCV_{OS}(RTI) = TCV_{IOS} + \frac{TCV_{OOS}}{G}$$
 (3)

For example, the maximum input-referred drift of an AMP-01EX set to G = 1000 becomes;

$$TCV_{OS} \, (RTI) = 0.3 \mu \text{V/}^{\circ} \, \text{C} + \, \frac{100 \mu \text{V/}^{\circ} \, \text{C}}{1000} = 0.4 \mu \text{V/}^{\circ} \, \text{C max}.$$

INPUT BIAS AND OFFSET CURRENTS

Input transistor bias currents are additional error sources which can degrade the input signal. Bias currents flowing through the signal source resistance appear as an additional offset voltage. Equal source resistance on both inputs of an IA will minimize offset changes due to bias current variations with signal voltage and temperature. However, the difference between the two bias currents, the input offset current, produces a non-trimmable error. The magnitude of the error is the offset current times the source resistance.

A current path must always be provided between the differential inputs and analog ground to ensure correct amplifier operation. Floating inputs, such as thermocouples, should be grounded close to the signal source for best common-mode rejection.

GAIN

The AMP-01 uses two external resistors for setting voltage gain over the range 0.1 to 10,000. The magnitudes of the scale resistor, R_S , and gain-set resistor, R_G , are related by the formula: $G = 20 \times R_S/R_G$, where G is the selected voltage gain (Refer to Figure 1).

Figure 1. Basic AMP-01 connections for gains 0.1 to 10,000.

The magnitude of RS affects linearity and output referred errors. Circuit performance is characterized using $R_S = 10k\Omega$ when operating on ± 15 volt supplies and driving a ± 10 volt output. R_S may be reduced to $5k\Omega$ in many applications particularly when operating on ± 5 volt supplies or if the output voltage swing is limited to ±5 volts. Bandwidth is improved with $R_S = 5k\Omega$ and this also increases commonmode rejection by approximately 6dB at low gain. Lowering the value below $5k\Omega$ can cause instability in some circuit configurations and usually has no advantage. High voltage gains between two and ten thousand would require very low values of R_G . For $R_S = 10k\Omega$ and $A_V = 2000$ we get $R_G = 100\Omega$; this value is the practical lower limit for R_G . Below 100 Ω , mismatch of wirebond and resistor temperature coefficients will introduce significant gain tempco errors. Therefore, for gains above 2,000, $R_{\mbox{\scriptsize G}}$ should be kept constant at 100 $\!\Omega$ and R_S increased. The maximum gain of 10,000 is obtained with R_S set to $50k\Omega$.

Metal-film or wirewound resistors are recommended for best results. The absolute values and TC's are not too important, only the ratiometric parameters.

AC amplifiers require good gain stability with temperature and time, but DC performance is unimportant. Therefore, low cost metal-film types with TC's of 50ppm/°C are usually adequate for R_S and R_G . Realizing the full potential of the AMP-01's offset voltage and gain stability requires precision metal-film or wirewound resistors. Achieving a 15ppm/°C gain tempco at all gains requires R_S and R_G temperature coefficient matching to 5ppm/°C or better.

RG AND RS SELECTION

Gain accuracy is determined by the ratio accuracy of R_S and R_G combined with the gain equation error of the AMP-01 (0.6% max for A/E grades).

All instrumentation amplifiers require attention to layout so thermocouple effects are minimized. Thermocouples formed between copper and dissimilar metals can easily destroy the TCV_{OS} performance of the AMP-01 which is typically 0.15 μ V/° C. Resistors themselves can generate thermoelectric EMF's when mounted parallel to a thermal gradient. "Vishay" resistors are recommended because a maximum value for thermoelectric generation is specified. However, where thermal gradients are low and gain TC's of 20-50ppm are sufficient, general-purpose metal-film resistors can be used for R_G and R_S.

COMMON-MODE REJECTION

Ideally, an instrumentation amplifier responds only to the difference between the two input signals and rejects common-mode voltages and noise. In practice, there is a small change in output voltage when both inputs experience the same common-mode voltage change; the ratio of these voltages is called the common-mode gain. Common-mode rejection (CMR) is the logarithm of the ratio of differential-mode gain to common-mode gain, expressed in dB. CMR specifications are normally measured with a full-range input voltage change and a specified source resistance unbalance.

The current-feedback design used in the AMP-01 inherently yields high common-mode rejection. Unlike resistive feedback designs, typified by the three-op-amp IA, the CMR is not degraded by small resistances in series with the reference input. A slight, but trimmable, output offset voltage change results from resistance in series with the reference input.

The common-mode input voltage range, CMVR, for linear operation may be calculated from the formula:

$$CMVR = \pm \left(IVR - \frac{|V_{OUT}|}{2G}\right)....(4)$$

IVR is the data sheet specification for input voltage range; V_{OUT} is the maximum output signal; and G is the chosen

voltage gain. For example, at 25° C, IVR is specified as ± 10.5 volt minimum with ± 15 volt supplies. Using a ± 10 volt maximum swing output and substituting the figures in (4) simplifies the formula to:

$$CMVR = \pm \left(10.5 - \frac{5}{G}\right)....(5)$$

For all gains greater than or equal to 10, CMVR is ± 10 volt minimum; at gains below 10, CMVR is reduced.

ACTIVE GUARD DRIVE

Rejection of common-mode noise and line pick-up can be improved by using shielded cable between the signal source and the IA. Shielding reduces pick-up, but increases input capacitance, which in turn degrades the settling-time for signal changes. Further, any imbalance in the source resistance between the inverting and noninverting inputs, when capacitively loaded, converts the common-mode voltage into a differential voltage. This effect reduces the benefits of shielding. AC common-mode rejection is improved by "bootstrapping" the input cable capacitance to the input signal, a technique called "guard driving". This technique effectively reduces the input capacitance. A single guard-driving signal is adequate at gains above 100 and should be the average value of the two inputs. The value of external gain resistor R_G is split between two resistors R_{G1} and R_{G2}; the center tap provides the required signal to drive the buffer amplifier (Figure 2).

GROUNDING

The majority of instruments and data acquisition systems have separate grounds for analog and digital signals. Analog ground may also be divided into two or more grounds which will be tied together at one point, usually the analog power-supply ground. In addition, the digital and analog grounds may be joined, normally at the analog ground pin on the A-to-D converter. Following this basic grounding practice is essential for good circuit performance (Figure 3).

Mixing grounds causes interactions between digital circuits and the analog signals. Since the ground returns have finite resistance and inductance, hundreds of millivolts can be developed between the system ground and the data acquisition components. Using separate ground returns minimizes the current flow in the sensitive analog return path to the system ground point. Consequently, noisy ground currents from logic gates do not interact with the analog signals.

Inevitably, two or more circuits will be joined together with their grounds at differential potentials. In these situations, the differential input of an instrumentation amplifier, with its high CMR, can accurately transfer analog information from one circuit to another.

SENSE AND REFERENCE TERMINALS

The sense terminal completes the feedback path for the instrumentation amplifier output stage and is normally connected directly to the output. The output signal is specified with respect to the reference terminal, which is normally connected to analog ground.

Figure 2. AMP-01 evaluation circuit showing guard-drive connection.

Figure 3. Basic grounding practice.

If heavy output currents are expected and the load is situated some distance from the amplifier, voltage drops due to track or wire resistance will cause errors. Voltage drops are particularly troublesome when driving 50Ω loads. Under these conditions, the sense and reference terminals can be used to "remote sense" the load as shown in Figure 4. This method of connection puts the IXR drops inside the feedback loop and virtually eliminates the error. An unbalance in the lead resistances from the sense and reference pins does not degrade CMR, but will change the output offset voltage. For example, a large unbalance of 3Ω will change the output offset by only 1mV.

DRIVING 50Ω LOADS

Output currents of 50mA are guaranteed into loads of up to 50Ω and 26mA into 500Ω . In addition, the output is stable and free from oscillation even with a high load capacitance. The combination of these unique features in an instrumentation amplifier allows low-level transducer signals to be condi-

tioned and directly transmitted through long cables in voltage or current form. Increased output current brings increased internal dissipation, especially with 50Ω loads. For this reason, the power-supply connections are split into two pairs; pins 10 and 13 connect to the output stage only and pins 11 and 12 provide power to the input and following stages. Dual supply pins allow dropper resistors to be connected in series with the output stage so excess power is dissipated outside the package. Additional decoupling is necessary between pins 10 and 13 to ground to maintain stability when dropper resistors are used. Figure 5 shows a complete circuit for driving 50Ω loads.

HEATSINKING

To maintain high reliability, the die temperature of any IC should be kept as low as practicable, preferably below 100°C. Although most AMP-01 application circuits will produce very little internal heat — little more than the quiescent dissipation of 90mW — some circuits will raise that

Figure 4. Remote load sensing.

Figure 5. Driving 50 Ω loads.

to several hundred milliwatts (for example, the 4-20mA current transmitter application, Figure 8). Excessive dissipation will cause thermal shutdown of the output stage thus protecting the device from damage. A heatsink is recommended in power applications to reduce the die temperature.

Several appropriate heatsinks are available; the Thermalloy 6010B is especially easy to use and is inexpensive. Intended for dual-in-line packages, the heatsink may be attached with a cyanoacrylate adhesive. This heatsink reduces the thermal resistance between the junction and ambient environment to approximately 80° C/W. Junction (die) temperature can then be calculated by using the relationship:

$$P_{d} = \frac{T_{j} - T_{a}}{\theta_{ja}}$$

where T_j and T_a are the junction and ambient temperatures respectively, θ_{ja} is the thermal resistance from junction to ambient, and P_d is the device's internal dissipation.

OVERVOLTAGE PROTECTION

Instrumentation amplifiers invariably sit at the front end of instrumentation systems where there is a high probability of exposure to overloads. Voltage transients, failure of a transducer, or removal of the amplifier power supply while the signal source is connected may destroy or degrade the performance of an unprotected amplifier. Although it is impractical to protect an IC internally against connection to power lines, it is relatively easy to provide protection against typical system overloads.

The AMP-01 is internally protected against overloads for gains of up to 100. At higher gains, the protection is reduced and some external measures may be required. Limited internal overload protection is used so that noise performance would not be significantly degraded.

AMP-01 noise level approaches the theoretical noise floor of the input stage which would be $4\text{nV}/\sqrt{\text{Hz}}$ at 1kHz when the gain is set at 1000. Noise is the result of shot noise in the input devices and Johnson noise in the resistors. Resistor noise is calculated from the values of $R_{G}(200\Omega$ at a gain of 1000) and the input protection resistors (250Ω) . Active loads for the input transistors contribute less than 1nV/ $\sqrt{\text{Hz}}$ of noise. The measured noise level is typically $5\text{nV}/\sqrt{\text{Hz}}$.

Diodes across the input transistor's base-emitter junctions, combined with 250Ω input resistors and $R_{\rm G}$, protect against differential inputs of up to $\pm 20 \rm V$ for gains of up to 100. The diodes also prevent avalanche breakdown that would degrade the I_B and I_{OS} specifications. Decreasing the value of $R_{\rm G}$ for gains above 100 limits the maximum input overload protection to $\pm 10 \rm V$. External series resistors could be added to guard against higher voltage levels at the input, but resistors alone increase the input noise and degrade the signal-to-noise ratio, especially at high gains.

Protection can also be achieved by connecting back-to-back 9.1V zener diodes across the differential inputs. This technique does not affect the input noise level and can be used down to a gain of 2 with minimal increase in input current. Although voltage-clamping elements look like short circuits at the limiting voltage, the majority of signal sources provide less than 50mA, producing power levels that are easily handled by low-power zeners.

Simultaneous connection of the differential inputs to a low-impedance signal above 10V during normal circuit operation is unlikely. However, additional protection involves adding 100Ω current-limiting resistors in each signal path prior to the voltage clamp; the resistors increase the input noise level to just $5.4\text{nV}/\sqrt{\text{Hz}}$ (refer to Figure 6).

Input components, be they multiplexers or resistors, should be carefully selected to prevent the formation of thermocouple junctions which would degrade the input signal.

Figure 6. Input overvoltage protection for gains 2 to 10,000.

POWER SUPPLY CONSIDERATIONS

Achieving the rated performance of precision amplifiers in a practical circuit requires careful attention to external influences. For example, supply noise and changes in the nominal voltage directly affect the input offset voltage. A PSR of 80dB means that a change of 100mV on the supply, not an uncommon value, will produce a $10\mu V$ input offset change. Consequently, care should be taken in choosing a power unit that has a low output noise level, good line and load regulation, and good temperature stability.

APPLICATIONS INFORMATION

Figure 7. High-compliance bipolar current source with 13-bit linearity.

Figure 8. 13-bit linear 4-20mA transmitter constructed by adding a voltage reference. Thermocouple signals can be accepted without preamplification.

l

Figure 9. Adding two transistors increases output current to \pm 1A without affecting the quiescent current of 4mA. Power bandwidth is 60kHz.

Figure 10. The AMP-01 makes an excellent programmable-gain instrumentation amplifier. Combined gain-switching and settling time to 13-bits falls below $100\mu s$. Linearity is better than 12-bits over a gain range 1 to 1000.

Figure 11. A differential input instrumentation amplifier with differential output replaces a transformer in many applications. The output will drive a 600Ω load at low distortion, (0.01%).

Figure 12. Configuring the AMP-01 as a noninverting operational amplifier provides exceptional performance. The output handles low load impedances at very low distortion, 0.006%.

Figure 13. The inverting operational amplifier configuration has excellent linearity over the gain range 1 to 1000, typically 0.005%. Offset voltage drift at unity gain is improved over the drift in the instrumentation amplifier configuration.

Figure 14. Stability with large capacitive loads combined with high output current capability make the AMP-01 ideal for line driving applications. Offset voltage drift approaches the TCV_{IOS} limit, (0.3 μ V/°C).

NOISE TEST CIRCUIT (0.1Hz to 10Hz)

SETTLING-TIME TEST CIRCUIT

AMP-01

INSTRUMENTATION AMPLIFIER WITH AUTO-ZERO

BURN-IN CIRCUIT

