MICROCHIP

ANG26

L ead-Acid Battery Charger Implementation Using PIC14C000

Author: Dan Butler
Microchip Technology Inc.

INTRODUCTION

The PIC14C000 comes with several peripherals specif-
ically aimed at the battery market. The programmable
reference and onboard comparators are useful for cre-
ating charge control circuits, while the analog-to-digital
(A/D) converter can monitor the charge state to prevent
overcharge. The control software is written in “C” for
maintainability and transportability. Where necessary,
in line assembly is used.

This application note is intended to demonstrate the
use of the PIC14C000 in an intelligent battery charger.
The charger is designed to charge a sealed lead-acid
battery (YUASA NP7-12 12V, 7AH); however, the
charge parameters are easily modified to work with dif-
ferent lead-acid batteries.

The typical method of charging lead-acid batteries is
with a constant voltage, current-limited source. That
method allows a high initial charge current that tapers
off until the battery reaches full charge.

This design uses a constant current, allowing the volt-
age to rise until the battery voltage reaches a full
charge. The charge current is then turned off to prevent
overcharging. This allows a high initial charge to quickly
bring the battery to a full charge and a low maintenance
charge current as needed to maintain the full charge.
The constant current design is also easily adaptable to
NiCd batteries.

As voltage rises during the charge cycle of the lead-
acid battery, it quickly passes 2.1 V/cell. As charging
progresses, oxygen begins to be liberated at the posi-
tive plates at 2.2 V/cell. At 2.3 V/cell, hydrogen is liber-
ated at the negative plates. This is considered a full
charge, as any further current passed into the cell sim-
ply releases gasses rather than charging the battery.
Hence, the upper voltage limit is set at 13.8V (2.3 V/
cell), and the lower voltage is set at 12.6V (2.1 V/cell).
As a practical consideration, the lower voltage limit is
set slightly lower (12.5V) to lengthen the charge cycles.
The battery voltage takes just minutes to decay from
over 13.8V to 12.6V. It then takes several hours to
decay from 12.6V to 12.5V.

THEORY OF OPERATION

Charge current is controlled by a comparator and pro-
grammable reference onboard the PIC14C000. The
other side of the comparator is fed by the voltage
across a sense resistor. The output of the comparator
controls a FET (Q1), which switches the charge voltage
on and off. The charge is interrupted once-per-second
to read the battery voltage. When it reaches a maxi-
mum voltage, the charge current is shut off to prevent
overcharge.

The PIC14C000 continues to monitor battery voltage.
Over time, the battery voltage decays. When the volt-
age drops below the lower threshold, the trickle charge
is activated to bring the battery back up to full charge.

The computing power of the PIC14C000 allows the
charger to accurately control the charge cycles to
quickly recharge the battery while preventing over-
charge.

0 1997 Microchip Technology Inc.

DS00626A-page 1

ANG26

CHARGING STRATEGY

First, charge at a high rate (1A for this battery) until the
battery voltage is above the high limit (13.8V). The
charge current is then cut off, allowing the battery volt-
age to decay until it descends past the low limit (12.5V).
A low current charge (150 mA) is then applied to again
bring the battery voltage up past the high limit. The drift-
downl/trickle charge cycle repeats (Figure 1).

FIGURE 1: CHARGING STRATEGY

High Limit

Low Limit

Volts

DS00626A-page 2 [0 1997 Microchip Technology Inc.

ANG26

ALGORITHM

The controller starts by measuring the voltage on the
battery to determine the initial charge rate (high, low or
off). Next, it sets up the comparator to control the con-
stant current charge and then goes to sleep.

Note: The comparator continuously controls the
current even while the controller sleeps.

After 1 second, the watchdog timer (WDT) wakes the
controller, and the battery voltage is measured again. If
any of the trip points are reached, the charge rate is
adjusted. After the comparator is reset, the controller
goes back to sleep, and the cycle repeats (Figure 2).

Once the measurement/decision cycle is complete, the
controller goes to sleep for about 1.15 seconds (subject
to the drift of the WDTs internal RC oscillator). Time-out
of the WDT wakes up the controller and continues the
cycle. The sleep cycle is used to save power and let the
hardware do the work of counting the time rather than
using timing loops.

Two LEDs are included to provide feedback on what the
charger is doing. The red LED signifies a high current
charge, and the green LED signifies a low current
charge. While the charge is in progress, the active LED
blinks at 1 Hz. This is the momentary suspension of
charging while the battery voltage is measured.

As the battery ages, it may no longer be able to charge
up past the high charge threshold. Time limits have
been implemented to account for this. The high charge
and low charge cycles have maximum time limits asso-
ciated with them. The discharge cycle has a minimum
time limit.

FIGURE 2:

CONTROLLER FLOW CHART

Measure
initial battery
voltage

\

Determine
initial
charge

E—

Set up
comparator
for rate charge

1 second
sleep

'

Measure
battery
voltage

Determine
charge rate

0 1997 Microchip Technology Inc.

DS00626A-page 3

ANG26

Algorithm Parameters:

These parameters are #defines at the top of the code,
meaning the code must be recompiled to change the
parameters. The hardware could be modified to include
dip or rotary switches to change some or all of these

parameters.
TABLE 1: CONTROLLER PARAMETERS

Parameter Units Range' | Resolution” Format Description
V limit low Volts 0-255.996 | .00390625 Fixed point (16:8) | Minimum battery voltage
V limit high Volts 0-255.996 | .00390625 Fixed Point (16:8) | Maximum battery voltage
High current Amperes | 0-255.996 | .00390625 Fixed point (16:8) | High charge current
Low current Amperes | 0-255.996 | .00390625 Fixed Point (16:8) | Low charge current
High charge time limit | Minutes 0-65536 1 Unsigned long Maximum time for high charge
Low charge time limit Minutes 0-65536 1 Unsigned long Maximum time for low charge
Charge rest time Minutes | 0-65536 1 Unsigned long Minimum no charge time

T Range and Resolution are the mathematical precision that can be expressed with the parameter, not necessarily
what the circuit is capable of.

DS00626A-page 4

[0 1997 Microchip Technology Inc.

ANG26

HARDWARE

The PIC14C000 provides two comparators and pro-
grammable references (Figure 3). One set is used to
maintain the charge current on the battery. Once the
comparator is set up, it controls the current without pro-
cessor intervention. The other comparator is not used
in this application; however, it could be used to control
current on a second battery to implement parallel
charging. Battery voltage is measured using the 16-bit
A/D converter.

The board used assumes the existence of an external
power supply. This supply needs to provide some head-
room above the expected maximum battery voltage
and supply enough current for the selected high charge
current. In this example, a 16.7V, 2.6A power supply
was used.

The charger current to the battery is controlled by the
comparator/buck converter. When the comparator
senses that the charge current is too high, it pulls the
gate of the Q1 low, turning off the current from the
power supply and allows current to flow through D2.
The buck converter (L1, C2, and D2) takes over and
modulates the current to the battery at a controlled rate.
When the comparator senses the charge current is too
low, it turns on, allowing current from the power supply
to flow through Q1. The buck converter now increases
current at a controlled rate.

The component values for L1 and C2 are chosen based
on the operating parameters of the system. For this
system, the buck converter frequency is 15 KHz. The
inductor (L1) is calculated from the equation:

L = (VI =VsAaT—-V0)/IPK) ¢« TON

where:
Vi = Input Voltage.
Vo = Output Voltage.
VsaT = Saturation voltage of transistor.
IPK = 2o maximum.
lo MAXx = Maximum output current.
Ton = “OnTime” of duty cycle

(output of comparator).

For this design, VI = 16.7V, VsSAT = 0.25V, Vo = 6.0V
(minimum to support 6V battery) IPk = 2A, TON = 54 ps
(80% duty cycle for high current charge):

L = ((16.7-0.25-6.0)/2) » 5us = 282uH
The output capacitance is chosen such that:

Co = IPKT/(8VRIPPLE)

where:
IPK = 2 lo maximum
lo MAX = Maximum output current
T = Total comparator cycle time
VRIPPLE = Output voltage ripple

For this design:

IPK = 2A,T = 66us, VRIPPLE = 400mV

Co > (2 * 66)/(8 » 400mV) = 41uf

The diode (D2) needs to be sized large enough to han-
dle IPK.

FIGURE 3: SIMPLIFIED SCHEMATIC
L1
Q1 0000
16.7V
1T ek L o
A2D AN4 ;
ANS -

PIC14C000

See Figure 4 for actual circuit design.

R11

|||—-'\/\/\,

0 1997 Microchip Technology Inc.

DS00626A-page 5

ANG26

DETAILS OF THE SOFTWARE
IMPLEMENTATION

Constant Current Control

The comparator is used in conjunction with a program-
mable voltage reference to control the current into the
battery. The voltage reference feeds one side of the
comparator, while a sense resistor feeds the other. The
output switches a FET to control the current. The volt-
age reference (PIC14C000 Data Sheet, Section 9
DS40122) is programmed as follows:

V = Current » SenseResistor + Level Shift

where:

Current = The value we want the comparator
to control to.

Sense Resistor = The value of the current resistor
(0.2 Ohms).

Level Shift = The 0.5V shift performed on the
voltage at the sense resistor
(PIC14C000 Data Sheet,
Section 9.2 — DS40122B).

This voltage is used in a lookup table which returns the
coarse bits (PREFx<7:3>) for the programmable refer-
ence. The fine bits (PREFx<2:0>) are calculated as the
difference between the voltage and coarse range,
divided by the resolution of the table.

Analog-to-Digital Conversion

The battery voltage is measured via the A/D converter.
The main program turns off the charger, then runs a
conversion on the battery channel. Function
AD_Counts performs 16 conversions on the channel,
subtracts off the comparator/capacitor offset, and
returns the average. The averaging is necessary to
remove the noise from the system. The same A/D con-
version is also performed on the internal bandgap ref-
erence. These values are then used in the following
equation from AN624 to obtain the A/D converter volt-
age:

VIN = ((NIN—NOFFSET)/(NBG — NOFFSET)) « KBG

The A/D converter operates most accurately with volt-
ages near the bandgap reference. Therefore, the hard-
ware runs the battery voltage through a voltage divider
(R8 and R9) to drop the battery voltage (approximately
13V) down to 1.2V. The battery measurement calcula-
tion then multiplies the result from the A/D converter by
the resistor ratio to get the original battery voltage:

BatteryVoltage = VIN ¢ (R8 + R9)./(R8)

Recalibrating the A/D converter (Measuring NOFFSET
and NBG) to compensate for component drift is done
every cycle. Since the components do not drift very
quickly, it's not necessary to recalibrate this frequently,
however, it is more accurate and takes advantage of
otherwise idle processor time. If processor time is a
concern, recalibrating once per minute is sufficient.

Time Keeping

The program counts the seconds to limit the charge
cycles on the battery. The WDT times out about every
1.15 seconds, and the rest of the measurement cycle
takes about 0.1 seconds, giving have a total cycle time
of 1.25 seconds. Each bump of the timer counts for 1
second, and every fourth second another is added to
keep the count accurate. This method of timing is only
accurate to a few percent. While not good enough for a
clock, it's accurate enough to limit the charge cycles on
the battery.

DS00626A-page 6

[0 1997 Microchip Technology Inc.

ANG26

Math

Fixed point math is used where resolutions of less than
one are needed. This code can be updated to use float-
ing point or 32-bit integers, which will allow a cleaner
implementation of the calculations required. For this
example, limited versions of basic Add/Subtract/Multi-
ply/Divide functions operating on positive 32-bit inte-
gers are used. File “MATH32.C’ implements 32-bit
add, subtract, multiply, divide, and shift. The add, sub-
tract, divide, and shift functions start with 32-bit values
and give 32-bit results. The multiply starts with 32-bit
multiplicands and gives a 64-bit result.

Charging Circuit Bench Results

When the programmable voltage reference was set to
supply the fast charge current of 1A, the actual charge
current was measured within 50 mA. However, when
the programmable voltage reference was set to supply
150 mA trickle current, the actual output was measured
to be as high as 275 mA. This higher trickle current is
acceptable for this application since its purpose is to
keep the battery topped off at full charge.

This delta is due to design limitations encountered
when integrating analog components onto a digital sub-
strate.

Converting the Charger to Work With Other
Lead-Acid Batteries

This application note was specifically written to charge
a YUASA 12V, 7AH battery, however other batteries
may be charged with few modifications. Most of the
charge algorithm parameters are in software. However,
if the voltage is other than 12V, different resistors (R8
and R9) may be needed in the voltage divider leading
to the A/D converter. For example, to charge a 6V, 2AH
sealed lead-acid battery requires the necessary
changes:

1. Swap R8 for a 137Q, which will keep the voltage
at the A/D converter around the 1.2V optimum.

2. Change the multiplier at the bottom of AN624,
Equation 5 to:

(R9+R8)_ (1M +137K)_
RS 137K

8.29927

3. Lower the power supply voltage (9V, 1A).

4. Change the charging parameters (#defines at
the top of the code):
a) V_LIMIT_HIGH 7.2V (0x0733 = 7.2 « 256)
b) V_LIMIT_LOW 6.3V (0x064C = 6.3 * 256)
¢) HIGH_CURRENT (No change)
d) LOW_CURRENT (No change)
e) HIGH_CHARGE_TIME_LIMIT 120
f) LOW_CHARGE_TIME_LIMIT 180
g) CHARGE_REST_TIME 0

Conclusions

The PIC14C000 has several onboard peripherals that
are specifically designed to simplify battery manage-
ment applications. Further enhancements could be
made such as:

1. Use an onboard temperature sensor to monitor
battery temperature, which is another sign of
overcharging. Once an over temperature condi-
tion is detected, the charge cycle would be ter-
minated regardless off the battery voltage. This,
however, would require the PIC14C000 to be
physically attached to the battery. Alternatively, a
remote temperature sensor could be mounted to
the battery and read via the A/D converter.

2. The internal RC oscillator frequency drifts with
temperature. This drift rate is known and stored
in the calibration data (Ktc), which would allow
the timer to compensate with more accurate tim-
ing.

3. If better charge current accuracy is required, the
charging circuitry should be implemented using
external components.

REFERENCES

1. PIC14C000 data sheet (DS40122), Microchip
Technology, Inc.

2. Microchip AN624 “PIC14C000 A/D Theory and
Application,” Brian Dellacroce.

3. Battery Reference Book (2”d Ed), T.R. Cromp-
ton.

0 1997 Microchip Technology Inc.

DS00626A-page 7

ANG26

P1C14C000 LEAD-ACID BATTERY CHARGER

FIGURE 4:

yOd ddARI TN P
TMO0L/EDY SO X
4o}y V10S/904 55X
VdNO/TOY WvaS/Lod X
v434/004 OIUAGEX
SS ddArg
WNs N.8d/TOSO—X 1
- OvaD LNOM1D/2OSO;—X oy
INV/2Qd 810S/00d5—X
oNv/9ad gvaS/TAQdE—X
o SNV/SQY 8dNO/Zad s
4 wm PNV/rQd 943d/eQuE—X
20 ENV/EVS ONV/0Vd F5—X
by ZNV/2vd INV/IVY |N|H X
d3avak v 0002¥TId
n
2
T
]
MT
94
Ellol == JloT=
10+ %]
G
Z
LNdNI n_° on L
dOS0T8LOW G+
YIADYVHD TUA
=
1
i

0 1997 Microchip Technology Inc.

DS00626A-page 8

ANG26

PARTS LIST

c1 100 pF

c2 47 YF

Q1 MTP2955E

Q2 2N3904

C4 0.047 pF

C5 10 uF

C6 0.1 pF

D1 B220

D2 1IN5817

D3 Green LED

D4 Red LED

J1 Connector appropriate to power supply.
J2 Connector appropriate to battery.
L1 270 uH

R1, R5, R6 1K All Resistors 0.25W unless otherwise specified
R2 150

R4 82

R8 68K

R9 M

R11 0.2 Ohm, 1W, wire wound

R12, R13 470

R14 47K

Ul PIC14C000

VR1 7805 Voltage Regulator

0 1997 Microchip Technology Inc.

DS00626A-page 9

ANG26

required).

Please check the Microchip BBS for the latest version of the source code. Microchip’s Worldwide Web Address:
www.microchip.com; Bulletin Board Support: MCHIPBBS using CompuServe® (CompuServe membership not

APPENDIX A: LEADACID.C

/
* Filename: LEADACID.C

* Author: Dan Butler

* Company: Microchip Technology
* Revision: Rev 1.0

* Date: 29 January 1997

* Compiler: MPLAB-C rev 1.10

* Include files:

* 14000.h Version 1.01

* delayl4.h Version 1.00

* Math.h Version 1.00

* math32.c 32 bit integer math functions
* timer.c simple timing functions

* Implements a simple battery charging algorithm. Uses comparator B to
* set up a constant current charge. Takes a reading on the battery once per
* second to see if the charge is complete.

* Clock Frequency 4 MHz Internal RC

* Configuration Bit Settings WDT on, Power up timer off
* Program and Data Memory Usage

* Program: Ox4E3

* Data: Ox7f

* What's Changed

* Date Description of Change

#include <14000.h>
#include <delay14.h>
#include <math.h>

I* */
/* Charging algorithm parameters. Change these as appropriate for your */
/* application. */

* Fixed point values are used below. To calculate new values, multiply */

/* your floating point value by 2~(number of bits behind the decimal) *

/* */

#define V_LIMIT_LOW 0x0C80 /* Lower voltage limit 12.50V(2.08V/c)*/
#define V_LIMIT_HIGH 0x0DCD /* Upper voltage limit 13.8V(2.3V/c)*/
#define HIGH_CURRENT 0x0100 /* 0x0100 = 1.000A, Fixed pt (16:8) */
#define LOW_CURRENT 0x0026 /* 0x0026 = 0.150A, Fixed pt (16:8) */
#define NO_CURRENT 0 * off */

#define HIGH_CHARGE_TIME_LIMIT 60 /* Max time for high current charge */
#define LOW_CHARGE_TIME_LIMIT 120 /* max time for low current charge */
#define CHARGE_REST_TIME 0 /* min time for rest between charge */
#define SENSE_RESISTOR 0x3333 /* .2 ohms, Fixed point 16:16 */
#define LEVEL_SHIFT 0x8000 /* .5 volt level shift, fp 16:16 */

/* End Algorithm Parameters *

#define BATTERY_CHANNEL OxAO0 /* battery voltage measured on RD4 */
#define BAND_GAP_CHANNEL 0x40 /* Band Gap Reference */

DS00626A-page 10

0 1997 Microchip Technology Inc.

ANG26

#define TEMP_SENSOR_CHANNEL 0x70 /* internal temperature sensor */

/* Variables global to eliminate parameter passing and visibility in emulator */
unsigned int Kref [3]; /* 24 bit unsigned integer */
unsigned int KrefLo @ Kref;

unsigned int KrefMid @ Kref+1,;

unsigned int KrefHi @ Kref+2;

unsigned int Krefexp;

unsigned int Kbg [3]; /* 24 bit unsigned integer */
unsigned int KbglLo @ Kbg;

unsigned int KbgMid @ Kbg+1;

unsigned int KbgHi @ Kbg+2;

unsigned int Kbgexp;

unsigned long Nbg;

unsigned int NbgLo @ Nbg;

unsigned int NbgHi @ Nbg+1;

unsigned long Noffset;

unsigned int NoffsetLo @ Noffset;

unsigned int NoffsetHi @ Noffset + 1;

unsigned long Nbattery;

unsigned int NbatteryLo @ Nbattery;

unsigned int NbatteryHi @ Nbattery + 1;

unsigned long Vbattery;

unsigned int VbatteryLo @ Vbattery;

unsigned int VbatteryHi @ Vbattery + 1;

unsigned long ChargeState;

#include “math32.c”
#include “cmp-ref.c”
#include “timer.c”

~

* RunA2DConv

* runs a conversion on the currently selected AD channel.
*

* Input Variables:

* None

* Output Variables:

* Returns ADCOUNT value.

unsigned long RunA2DConv ()

{
unsigned long adcounts @ ADCAPL;

ADCONL1 &= OxOF;

ADCONL1 |= 0xCO0; /* select current constant (27uA). */
PIR1.ADCIF = 0;

SLPCON.REFOFF = 0;

SLPCON.ADOFF = 0; /* enable the AD module */
ADCONO.ADRST =1, /* Stop timer and fully dischage ramp capacitor */
Delay_10xUs_4MHz (50); /* delay 500 us */

ADTMRH = 0;

ADTMRL = 0; [* clear the conversion clock */
ADCONO.ADRST = 0; [* start conversion */

while ({(PIR1.ADCIF)); /* wait for conversion to complete */

return (adcounts);

/

* Calibrate_ AD

* Runs an AD conversion on the High and Low references and
* calculates the offset value. This is necessary to account

* for capacitor dialectric absorbtion and comparator offset.

*

For more information, see AN624.

*

0 1997 Microchip Technology Inc.

DS00626A-page 11

ANG26

E I R

Input Variables:

Kref (global) slope reference value from

calibration table.
Output Variables:

Noffset (global) AD counts to subtract to account
for capacitor dielectric absorbtion and
comparator offset

Return Value:

None

void Calibrate_AD ()

{

"

unsigned long difference;
unsigned int difflo @ difference;
unsigned int diffhi @ difference+1;
unsigned long Nrefhi;

unsigned long Nreflo;

unsigned int i;

unsigned int round;

regl [0] = 0;

regl[1] =0;

regl [2] = 0;

regl [3] =0;

for (i=0;i<16;i++)

{
ADCONO &= 0x0F;
ADCONO |= 0x50; /* Select SREFHI */
Nrefhi = RunA2DConv ();

ADCONO &= 0xO0F;
ADCONO |= 0x60; /* Select SREFLO */
Nreflo = RunA2DConv ();

difference = (Nrefhi - Nreflo);
reg2 [0] = 0;
reg2 [1] = 0;
reg2 [2] = diffhi;
reg2 [3] = difflo; /* binary point all the way to the right */
add32 ();
regl [0] = reg3 [O];
regl [1] = reg3 [1];
regl [2] = reg3 [2];
regl [3] =reg3 [3];
}

round = reg3 [3]; /* save off the highest order bit that will be lost*/
for (i=0;i<4;i++)

{

#asm
bcf STATUS,RPO /* assembly is necessary here. Using the */

bcf STATUS,C [* C shift operator (>>) doesn’t work
rrf regl,l /* here because it clears the carry bit */
rrf regl+1,1 /* between shifts. */

ref regl+2,1

rrf regl+3,1

#endasm

}

diffhi = reg3 [2];

difflo = reg3 [3];

if (round & 0x08)
++ difference;

difference *= Kref;
reg2 [0] = 0;
reg2 [1] = KrefHi;

/* complete rounding operation rather than truncation */

DS00626A-page 12

0 1997 Microchip Technology Inc.

ANG26

reg2 [2] = KrefMid;
reg2 [3] = KrefLo;
Shift_R2_Left (); /* align the binary point just ahead of reg2 [1] */

mult32 (); /* binary point now between req3[4] and reg3[5] */
difflo = reg3 [4];
diffhi = reg3 [3];

if (difference > Nreflo) /* check to see Noffset would be negative */

Noffset = 0;
else

Noffset = Nreflo - difference;
}
/
* ADC_Counts
* Do a conversion on the specified AD channel. Channel is
* measured 16 times and averaged.
*
* Input Variables:
* channel (Paramater) AD MUX channel - ADCONO(7:4) per table 8-1.
* Noffset (Global) 16 bit unsigned int
* Output Variables:
* None
* Return Value
*

Vbattery 16 bit fixed point

unsigned long ADC_Counts (unsigned int channel)
{
unsigned long Ncounts;
unsigned int NcountsHi @ Ncounts+1;
unsigned int NcountsLo @ Ncounts;
unsigned int i;
unsigned int round;

for (i=0;i<4;i++)
regl[i] = 0;

ADCONO &= 0xO0F;
ADCONO |= (channel & OxF0)
f or(i=0;i<16;i++)
{
Ncounts = RunA2DConv ();
Ncounts -= (long) Noffset;
reg2[0] = O;
reg2[1] = O;
reg2[2] = NcountsHi;
reg2[3] = NcountsLo;
add32 ();
reg1[0] = reg3[0];
regl[1] = reg3[1];
regl[2] = reg3[2];
regl[3] = reg3[3];
}

round = reg1[3];
round &= 0x08; /* save off the highest order bit that will be lost */
for (i=0;i<4;i++)
{
#asm
bcf STATUS, RPO
bcf STATUS, C
rrfregl, 1
rrfregl+1, 1
rf regl+2, 1

0 1997 Microchip Technology Inc.

DS00626A-page 13

ANG26

rrf regl+3, 1

#endasm

}

NcountsHi = reg1[2];

NcountsLo = regl1[3];

if (round)
Ncounts++;

return (Ncounts);

L R R N S N I I S S R R

AN624Eq5
Takes the conversions previously done on the battery and the
Bandgap, along with the calibration data in memory, and
performs AN 624 Equation 5 to convert the battery counts
back to the original voltage.

An 624 Equation 5:
V = (Nin - Noffset) / (Nbg - Noffset) * Kbg
(Subtraction of Noffset is performed in ADC_Counts).
Actual Calculation performed here:
V = AvgNin * Kbg / AvgNbg
This answer gives the voltage at the ADC, however the circuit
uses a resistive divider to take the ~12V at the battery down
to the ~1.2V for the ADC. We need to multiply by the ratio
of the resistances to get actual battery voltage.
Vbattery = V * (IMohm + 68Kohm)/68Kohm
=V *15.70588 (Nominal values)
For best accuracy, use measured values on the resistors
=V *15.95981 (Actual values: 1072180 / 67180)

Input Variables:

Nbattery unsigned int (16 bits)

Nbg unsigned int (16 bits)

Kbg fixed point (24 bits, 16 behind decimal)
Output Variables:

None
Return Value

Vbattery fixed point (16 bits, 8 behind decimal)

unsigned long AN624Eq5 ()

{
i

7

Vin = Kbg * Nbattery;
regl [0] = 0;
regl[1] =0;
regl [2] = NbatteryHi;
regl [3] = NbatteryLo;

reg2 [0] = 0;

reg2 [1] = KbgHi;

reg2 [2] = KbgMid;

reg2 [3] = KbgLo;

Shift_R2_Left (); // align the decimal point
mult32 (); /[answer in Reg3

Vin /= Nbg; /* AN624 Equation 5. (Subtractions previously done) */

reg2 [0] = 0;
reg2 [1] = 0;
reg2 [2] = NbgHi;
reg2 [3] = NbgLo;

reg3 [0] = reg3 [3];
reg3 [1] = reg3 [4];
reg3 [2] = reg3 [5];

DS00626A-page 14

0 1997 Microchip Technology Inc.

ANG26

7

reg3 [3] = reg3 [6];
div32 ();
Vbattery = Vin * 1062000/62000;
reg2 [0] =0; //15.70588 = 1068000/68000 (Nominal values)
reg2 [1] = 15; // 15.9598 =1072180/67180 (measured values)
reg2 [2] = 180; // decimal portion (.9598 * 256)
reg2 [3] = 181;
mult32 ();

VbatteryHi = reg3 [3];
VbatteryLo = reg3 [4];

return (Vbattery);

E S I

GetCalData

retrieves the calibration parameters, and converts them to

fixed point format.

Input Variables:

Name Description of what the variable is used for

Output Variables:
Kref fixed point (24 bits, 23 behind decimal point)

Kgb fixed point (24 bits, 23 behind decimal point)

void GetCalData ()

{
#asm
bsf PCLATH,3 ; select page 1
bef STATUS,RPO
call 0x07c0
movwf Krefexp
call 0x07cl
IORLW 0x80 ;ignore sign bit, force implied bit
movwf KrefHi
call 0x07c2
movwf KrefMid
call 0x07c3
movwf KrefLo
call 0x07c4
movwf Kbgexp
call 0x07c5
IORLW 0x80 ;ignore sign hit, force implied bit
movwf KbgHi
call 0x07c6
movwf KbgMid
call 0x07c7
movwf KbgLo
bef PCLATH, 3
#endasm
for (; Krefexp < Ox7f; Krefexp ++)
{ Il Kref>>=1,
#asm

bcf STATUS,RPO
bcf STATUS,C

rrf KrefHi,F

rrf KrefMid,F

rrf KrefLo,F

/

0 1997 Microchip Technology Inc.

DS00626A-page 15

ANG26

#endasm

}

for (; Kbgexp < Ox7f; Kbgexp ++)
{ IIKbg>>=1;
#asm
bef STATUS,RPO
bef STATUS,C

rrf KbgHi,F
ref KbgMid,F
rrf KbgLo,F
#endasm
}
return;
}
/
* Select New Charge
* Takes the current charge state, battery voltage and time in
* the current state and comes up with the new state. If a new
* state is entered, the timer is reset.
*
* Input Variables:
* BatteryVoltage (Parameter) Current battery voltage
* ChargeState (Global) Current Charge State
* (Hi, Low or No current)
* Output Variables:
*

ChargeState (Global) New Charge State

/
void select_new_charge (unsigned long BatteryVoltage)

{

unsigned long ChargeTime;

ChargeTime = ChargeMinutes (); /* how long have we been in the current charge state */
if (ChargeState == HIGH_CURRENT)
{
if ((BatteryVoltage >= V_LIMIT_HIGH)
|| (ChargeTime >= HIGH_CHARGE_TIME_LIMIT))
{
ChargeState = NO_CURRENT;
ResetTimer ();
}
}
else if (ChargeState == LOW_CURRENT)
{
if ((BatteryVoltage >= V_LIMIT_HIGH)
|| (ChargeTime >= LOW_CHARGE_TIME_LIMIT))
{
ChargeState = NO_CURRENT;
ResetTimer ();
}

}
else if ((BatteryVoltage <= V_LIMIT_LOW)

&& (ChargeTime >= CHARGE_REST_TIME))
{
ChargeState = LOW_CURRENT;
ResetTimer ();

}

Setup WDT
Sets up the WatchDog Timer for a 64:1 prescale. This will
wake the part up 1.15 seconds after it goes to sleep.

E I

DS00626A-page 16 0 1997 Microchip Technology Inc.

ANG26

* with interrupts disabled, processing resumes immediately
after the sleep instruction. Ref PIC14C000 D ata sheet,
section 10.7 (1996/1997 databook).

*

*

E

Input Variables:

None
Output Variables:
* None

*

*

void Setup_WDT ()

{
OPTION = 0xCE; /* Prescaler on WDT, 64:1 prescale */
INTCON = 0x00; /* all interrupts disabled */
CLRWDT ();

}

/
* Main Loop: starts of by reading battery voltage and determining

* type of charge needed (HIGH CURRENT, LOW CURRENT, NO CURRENT).

* Then every second it takes a voltage reading on the battery. If it's

* above the highest limit, it turns off the charge. If it's drained

* down below the lower limit, it turns on the trickle charge. Only

* way it can get set to fast charge is on startup.

*

* The processor is put to sleep for remainder of charging cycle (about 1S).

* WDT is setup to wake up the processor for the next cycle.

*

* state transition diagram: HIGH -> OFF <---> LOW

* HIGH transitions to OFF when V_LIMIT_HIGH is exceeded.

* OFF transitions to LOW when battery voltage has drained below V_LIMIT_LOW
* LOW transitions to OFF when V_LIMIT_HIGH is exceeded.

*

* Input Variables:
* None
* Output Variables:
* None
* Returned Value
* None
/
void main ()
{

unsigned long BVoltage; /* battery voltage Fixed point (16:8) */
unsigned int i;

TRISD = 0x30; /* AN 4 and 5 inputs, rest of port D all outputs */
StopCharge (); /* justin case it was running previously */
GetCalData (); /* get the Kref & Kbg values from cal data memory */

Calibrate_AD ();

Nbattery = ADC_Counts (BATTERY_CHANNEL);
Nbg = ADC_Counts (BAND_GAP_CHANNEL);
BVoltage = AN624EQ5 ();

if (BVoltage < V_LIMIT_LOW)
ChargeState = HIGH_CURRENT;
else if (BVoltage > V_LIMIT_HIGH)
ChargeState = NO_CURRENT;
else
ChargeState = LOW_CURRENT;
ResetTimer ();
Setup_WDT ();
while (1) /* loop forever */
{
ChargeCurrent (ChargeState);
SLEEP ();

0 1997 Microchip Technology Inc. DS00626A-page 17

ANG26

BumpTimer ();

Calibrate_AD (); /* Calculates Noffset */

StopCharge ();

Nbattery = ADC_Counts (BATTERY_CHANNEL);

Nbg = ADC_Counts (BAND_GAP_CHANNEL);

ChargeCurrent (ChargeState); [* turn charger back on while we */
BVoltage = AN624Eq5 (); /* crunch the numbers */
select_new_charge (BVoltage);

DS00626A-page 18 0 1997 Microchip Technology Inc.

ANG26

required).

Please check the Microchip BBS for the latest version of the source code. Microchip’s Worldwide Web Address:
www.microchip.com; Bulletin Board Support: MCHIPBBS using CompuServe® (CompuServe membership not

APPENDIX B:

CMP-REF.C

/*

/* Comparator - Reference utilities

/*
/* Functions:

/* StopCharge - turn off the comparator and force RD2 low
/* ChargeCurrent - Calculates the appropriate Vref value and
I* Sets up Voltage Reference and Comparator B.

/*

/* these two arrays form a look up table for the Programmable voltage */
* reference. The top voltage of the range is in the first table,
/* and the corresponding coarse bits for the programmable reference */
/* are in the second table. The lookup then subtracts off the bottom */

[* of the range and divides by the set size to get the fine bits.

/*

const unsigned long TopVoltage [32] = {
.1500 - .2000 */
.2000 - .2500 */
.2500 - .3000 */
.3000 - .3500 */
.3500 - .4000 */
.4000 - .4500 */
.4500 - .4550 */
.4550 - .4600 */
.4600 - .4650 */
4650 - .4700 */
4700 - .4750 */
4750 - .4800 */
.4800 - .4850 */
.4850 - .4900 */
.4900 - .4950 */
.4950 - .5000 */
.5000 - .5050 */
.5050 - .5100 */
.5100 - .5150 */
.5150 - .5200 */
.5200 - .5250 */
.5250 - .5300 */
.5300 - .5350 */
.5350 - .5400 */
.5400 - .5450 */
.5450 - .5500 */
.5500 - .6000 */
.6000 - .6500 */
.6500 - .7000 */
.7000 - .7500 */
.7500 - .8000 */

13107, /*
16384, /*
19660, /*
22937, I*
26214, [*
29491, /*
29497, [*
29818, /*
30146, /*
30474, I*
30801, /*
31129, /*
31457, /*
32112, /*
32440, I*
32768, /*
33005, /*
33423, /*
33751, /*
34078, /*
344086, /*
34734, I*
35061, /*
35389, /*
35717, I*
36044, /*
39321, /*
42598, /*
45875, I*
49152, [*
52428, [*
55705}; /*

const unsigned int Coarse [32] =

.8000 - .8500 */

{0xf8, /*.1500 - .2000 */
0xf0, /*.2000 - .2500 */
Oxe8, /*.2500 - .3000 */
0xe0, /*.3000 - .3500 */
0xd8, /*.3500 - .4000 */
0xdo, /*.4000 - .4500 */
0xc8, /*.4500 - .4550 */
0xc0, /*.4550 - .4600 */
0xb8, /*.4600 - .4650 */
0xb0, /*.4650 - .4700 */
Oxa8, /*.4700 - .4750 */

0 1997 Microchip Technology Inc.

DS00626A-page 19

ANG26

0xa0, /*.4750 -.
0x98, /*.4800 -
0x90, /*.4850 - .
0x88, /*.4900 - .
0x80, /*.4950 -
0x00, /*.5000 - .
0x08, /*.5050 - .
0x10, /*.5100 -
0x18, /*.5150 - .
0x20, /*.5200 - .
0x28, /*.5250 -
0x30, /*.5300 - .
0x38, /*.5350 - .
0x40, /*.5400 -
0x48, /*.5450 - .
0x50, /*.5500 - .
0x58, /*.6000 -
0x60, /*.6500 - .
0x68, /*.7000 - .
0x70, /*.7500 -
0x78}; /*.8000 - .

#define GREEN_ON PORTC.2=0
#define GREEN_OFF PORTC.2=1
#define RED_ON PORTC.3=0
#define RED_OFF PORTC.3=1

4800 */

.4850 */

4900 */
4950 */

.5000 */

5050 */
5100 */

5150 */

5200 */
5250 */

.5300 */

5350 */
5400 */

.5450 */

5500 */
6000 */

.6500 */

7000 */
7500 */

.8000 */

8500 */

/* Macro to turn on Green LED */
/* Macro to turn off Green LED */
/* Macro to turn on Red LED */
/* Macro to turn off Red LED */

StopCharge

None

None
Return Valu
None

EIE R S .

Input Variables:

Output Variables:

e

Disables the charge comparator and turns off the indicators

void StopCharge ()
{

CHGCON.CMBOE = 0; /* Disconnect RD2 from Comparator */

PORTD.2 = 0; /* Set RD2 LOW (turn off FET) */

RED_OFF;
GREEN_OFF;

StartCharge

See

None
Return Valu
None

EE R I B

Input Variables:
PrefValue - Value for Programmable Voltage Ref

PIC14C000 D ataSheet tables 9-1 and 9-2.

Output Variables:

e

Sets up the comparator and programmable voltage reference

void StartCharge (PrefValue)
unsigned int PrefValue;

{

SLPCON.CMOFF =0; /* enable comparators */

SLPCON.REFOFF
SLPCON.LSOFF =

CHGCON.CMBOE

=0;

0; /* enable level shift network */

=1;

/* comparator B output on RD2

/* enable power control references. */

*/

DS00626A-page 20

0 1997 Microchip Technology Inc.

ANG26

CHGCON.CPOLB =1; /* comparator B output inverted. */
PREFB = PrefValue;

ChargeCurrent
Sets up the constant current charge on comparator B, based on
the charge state. Also turns on the LED charge indicators.
(Red is Fast charge, Green is slow charge)

Input Variables:

charge_current (parameter)

charge rate (#define, fixed point (16:8)

Sense Resistor (#define, fixed point (16:16)
Output Variables:

PREFB Programmable Voltage Reference B
Return Value

None

E R T S . .

void ChargeCurrent (ChargeRate)
unsigned long ChargeRate;

{
unsigned long ControlV;
unsigned int ControlVHi @ ControlV+1;
unsigned int ControlVLo @ ControlV;
unsigned long step;
unsigned long templong;
unsigned int fine; /* fine adjust bits of PREFB */
unsigned int coarse;
unsigned int ij;

TRISD = 0x30; /* Set AN4 and ANS5 for input */

RED_OFF;
GREEN_OFF;
TRISC = 0x00; /* RC for output */

regl [0] = 0;

regl [1] =0;

regl [2] = (ChargeRate & OxFF00) >> 8;

regl [3] = ChargeRate & 0x00FF; /* decimal point before here */

reg2 [0] = 0;

reg2 [1] = 0;

reg2 [2] = (SENSE_RESISTOR & 0xFFO00) >> 8; /* decimal point before here */
reg2 [3] = SENSE_RESISTOR & Ox00FF;

mult32 ();

ControlVLo =reg3 [6]; /* keep most significant bits */

ControlVHi = reg3 [5];

ControlV += LEVEL_SHIFT;

for (i=0;i<32;i++) /* now need to convert ControlV to PREFB value */
{

templong = TopVoltage [i];

if (ControlV < templong)

if (i< 6) || (i>25))

step = 409;
else

step =41,
j=i1
templong = TopVoltage [j];
ControlV -= templong;
fine = ControlV / step;

0 1997 Microchip Technology Inc.

DS00626A-page 21

ANG26

coarse = Coarse [i];

break;
}
}
if (ChargeRate == HIGH_CURRENT)
{
RED_ON; /*turn on red LED */

StartCharge (coarse | fine);

}
else if (ChargeRate == LOW_CURRENT)

{
GREEN_ON; /* Turn on green LED */
StartCharge (coarse | fine);

}

else
StopCharge ();

DS00626A-page 22 0 1997 Microchip Technology Inc.

ANG26

Please check the Microchip BBS for the latest version of the source code. Microchip’s Worldwide Web Address:
www.microchip.com; Bulletin Board Support: MCHIPBBS using CompuServe® (CompuServe membership not
required).

APPENDIX C: TIMER.C

/
*

Filename: timer.c

Author: Dan Butler

Company: Microchip Technology
Revision: Rev 1.0
Date: 29 January 1997
Compiler: MPLAB-C rev 1.10

Include files:
none

Implements a timer operation:

ResetTimer
BumpTimer
ChargeMinutes
ChargeSeconds

Clock Frequency 4 MHz Internal RC
Configuration Bit Settings WDT on
Program and Data Memory Usage

What's Changed

Date Description of Change

unsigned int seconds;
unsigned int correction;
unsigned long minutes;

ResetTimer

Sets the timer counters all back to zero.

Input Variables:
None

Output Variables:
None

void ResetTimer ()

{

seconds = 0;
minutes = 0O;
correction = 0;

BumpTimer

bumps the timer by 1 second. Since the WDT timeout period
is actually 1.15 seconds, plus another .1 per cycle through
the code for a total of 1.25 S/cycle, we add an extra

second for each 4th time called. Accuracy at room
temperature has been measured at better than 6 seconds per

0 1997 Microchip Technology Inc.

DS00626A-page 23

ANG26

* hour (0.17%).

*

* Input Variables:

* None

* Output Variables:
* None

void BumpTimer ()
{
if (++seconds == 60)
{
++ minutes;
seconds = 0;

}

if (++correction == 4)
{
if (++seconds == 60)
{
++ minutes;
seconds = 0;

}

correction = 0;

}

* ChargeMinutes

*

* progress.

*

* Input Variables:

* None

* Output Variables:
* None

returns the number of minutes the charge cycle has been in

unsigned long ChargeMinutes ()

{
return (minutes);
}
/
* ChargeSeconds
* returns the number of seconds portion of the charge timer
*
* Input Variables:
* None
* Output Variables:
* None

unsigned int ChargeSeconds ()

{

return (seconds);

}

DS00626A-page 24

0 1997 Microchip Technology Inc.

ANG26

Please check the Microchip BBS for the latest version of the source code. Microchip’s Worldwide Web Address:
www.microchip.com; Bulletin Board Support: MCHIPBBS using CompuServe® (CompuServe membership not
required).

APPENDIX D: MATH32.C

/
* Filename: MATH32.C

* Author: Dan Butler

* Company: Microchip Technology
* Revision: Rev 1.0

* Date: 29 January 1997

* Compiler: MPLAB-C rev 1.10

* Include files:

* Math.h Version 1.00

*

* ASMD & Shift operations on 32 bit unsigned integers
*

* Clock Frequency 4 MHz Internal RC
* Configuration Bit Settings WDT on
Program and Data Memory Usage

* What's Changed

* Date Description of Change

#include <14000.h>

#include <math.h>

unsigned int regl [4]; /Imath routine registers - 32 bits
unsigned int reg2 [4]; /132 bits normally, but need 64 for the div.
unsigned int reg3 [8]; /164 bits - used for multiply routine
unsigned int Quotient [4];

unsigned int carry; /lflag register for math routine

unsigned int sign; /I'1 - positive or zero, 0 - negative
unsigned long longtemp;

unsigned long X, Y;

unsigned int ij;
/
* add32
* 32 bit unsigned addition reg3 = regl + reg2
*
Input Variables:
* regl - 32 bit unsigned integer
* reg2 - 32 bit unsigned integer
Output Variables:
* reg3 - 32 bit unsigned integer
* carry - overflow

void add32 ()
{
carry = 0;
for (i = 3; i 1= OXFF; i--)
{
X =regli;
Y =reg2 [i];
longtemp = X +Y + carry;
reg3 [i] = (unsigned int) longtemp;

0 1997 Microchip Technology Inc. DS00626A-page 25

ANG26

carry = longtemp >> 8;

}

ECE R S . N

sub32

32bit unsigned subtraction: regl =reg3 - reg2

Input Variables:

reg3 - 32 bit unsigned integer
reg2 - 32 bit unsigned integer

Output Variables:

regl - 32 bit unsigned integer
sign - 1: positive or zero. 0: negative

void sub32 ()

{
#asm
movf reg3,w ; copy Reg3to Regl
movwf regl
movf reg3+1,w
movwf regl+1
movf reg3+2,w
movwf regl+2
movf reg3+3,w
movwf regl+3
;Reg +3
movf reg2+3,w ; subtract low byte
subwf regl+3,1
i Reg +2
movf reg2+2,w ; move borrow bit to W reg
btfss STATUS,
incfsz reg2+2,w
subwf regl+2,1
iReg+1
movf reg2+1,w
btfss STATUS,
incfsz reg2+1,w
subwf regl+l,1
;Reg+0
movf reg2,w
btfss STATUS,
incfsz reg2,w
subwf regl,1
movf STATUS,w ; move borrow bit to W reg
andlw 0x01 ; get rid of the rest
movwf sign,1
#endasm
}
/
* mult32
* 32 bit unsigned multiplication: reg3 = regl * reg2
* Input Variables:
* regl - 32 bit unsigned integer
* reg2 - 32 bit unsigned integer
* Output Variables:
*

reg3 - 64 bit unsigned integer

DS00626A-page 26

0 1997 Microchip Technology Inc.

ANG26

void mult32 ()
{
for (i=0;i<8;i++)
reg3[i]=0;

for (i = 3; i 1= OXFF; i--)
{
carry = 0;
for (j = 3; j 1= OXFF; j--)
{
X =regl [i];
Y =reg2 [j];
longtemp = X *Y;
longtemp +=reg3 [i +j + 1];
longtemp += carry;
reg3 [i +j + 1] = (unsigned int) longtemp;
carry = longtemp >> 8;
}
reg3 [i] = carry;
}

Shift R2_Left

Shifts all 32 bits of reg2 left one position:
reg2 <<=1,;

Input Variables:

reg2 - 32 bit unsigned integer
Output Variables:

reg2 - 32 bit unsigned integer

EE .

void Shift_R2_Left ()

{
#asm
bef STATUS,C
rif reg2+3,1
rlf reg2+2,1
rlf reg2+1,1
rlf reg2,1
#endasm
}
/
* Shift_R2_Left
*
* Shifts all 32 bits of Quotient left one position:
* Quotient <<= 1;
*
* Input Variables:
* Quotient - 32 bit unsigned integer
* Output Variables:

Quotient - 32 bit unsigned integer

void Shift_Q_Left ()

{

#asm
bcf STATUS,C
rlf Quotient+3,1
rlf Quotient+2,1
rlf Quotient+1,1
rlf Quotient,1

0 1997 Microchip Technology Inc.

DS00626A-page 27

ANG26

#endasm

}

/

* Shift_R2_Right

* Shifts all 32 bits of reg2 right one position:
* reg2 >>=1;

* Input Variables:

* reg2 - 32 bit unsigned integer

* Output Variables:

*

reg2 - 32 bit unsigned integer

void Shift_R2_Right ()

{

#asm

bef STATUS,C
rrf reg2,1

rrf reg2+1,1

rrf reg2+2,1

rrf reg2+3,1

#endasm

}

/

* div32

*

* 32 bit unsigned division

* regl = reg3/reg2

*

* Input Variables:

* reg3 - 32 hit unsigned integer
* reg2 - 32 bit unsigned integer
* Output Variables:

*

regl - 32 bhit unsigned integer

void div32 ()

{

i=0;
while (!(reg2[0] & 0x80))
{

Shift_R2_Left ();

++i;
}
Quotient [0] =
Quotient [1
Quotient [2
Quotient [3

0;
0;
0;
0;

—_— e

for (j=0;j<=i;j++)

Shift_Q_Left ();
sub32 ();
if (sign) // was the result positive?
{
reg3 [0] = regl [O];
reg3 [1] = regl [1];
reg3 [2] =regl [2];
reg3 [3] = regl [3];
Quotient [3] |= 0x01,;

}
Shift_ R2_Right();

DS00626A-page 28

0 1997 Microchip Technology Inc.

ANG26

}

regl [0] = Quotient [0];
regl [1] = Quotient [1];
regl [2] = Quotient [2];
regl [3] = Quotient [3];

0 1997 Microchip Technology Inc. DS00626A-page 29

WORLDWIDE SALES & SERVICE

AMERICAS

Corporate Office

Microchip Technology Inc.

2355 West Chandler Blvd.

Chandler, AZ 85224-6199

Tel: 602-786-7200 Fax: 602-786-7277
Technical Support: 602 786-7627
Web: http://www.microchip.com

Atlanta

Microchip Technology Inc.

500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350

Tel: 770-640-0034 Fax: 770-640-0307

Boston

Microchip Technology Inc.

5 Mount Royal Avenue

Marlborough, MA 01752

Tel: 508-480-9990 Fax: 508-480-8575

Chicago
Microchip Technology Inc.
333 Pierce Road, Suite 180

Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Microchip Technology Inc.

14651 Dallas Parkway, Suite 816
Dallas, TX 75240-8809

Tel: 972-991-7177 Fax: 972-991-8588

Dayton

Microchip Technology Inc.

Two Prestige Place, Suite 150
Miamisburg, OH 45342

Tel: 937-291-1654 Fax: 937-291-9175

Los Angeles

Microchip Technology Inc.

18201 Von Karman, Suite 1090

Irvine, CA 92612

Tel: 714-263-1888 Fax: 714-263-1338

New York

Microchip Technology Inc.

150 Motor Parkway, Suite 416
Hauppauge, NY 11788

Tel: 516-273-5305 Fax: 516-273-5335

San Jose

Microchip Technology Inc.

2107 North First Street, Suite 590

San Jose, CA 95131

Tel: 408-436-7950 Fax: 408-436-7955
Toronto

Microchip Technology Inc.

5925 Airport Road, Suite 200
Mississauga, Ontario L4V 1W1, Canada
Tel: 905-405-6279 Fax: 905-405-6253

ASIA/PACIFIC
Hong Kong

Microchip Asia Pacific

RM 3801B, Tower Two

Metroplaza

223 Hing Fong Road

Kwai Fong, N.T., Hong Kong

Tel: 852-2-401-1200 Fax: 852-2-401-3431

India

Microchip Technology India

No. 6, Legacy, Convent Road

Bangalore 560 025, India

Tel: 91-80-229-0061 Fax: 91-80-229-0062

Korea

Microchip Technology Korea

168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku

Seoul, Korea

Tel: 82-2-554-7200 Fax: 82-2-558-5934

Shanghai

Microchip Technology

RM 406 Shanghai Golden Bridge Bldg.
2077 Yan’an Road West, Hongiao District
Shanghai, PRC 200335

Tel: 86-21-6275-5700

Fax: 86 21-6275-5060

Singapore

Microchip Technology Taiwan
Singapore Branch

200 Middle Road

#10-03 Prime Centre

Singapore 188980

Tel: 65-334-8870 Fax: 65-334-8850

Taiwan, R.O0.C

Microchip Technology Taiwan

10F-1C 207

Tung Hua North Road

Taipei, Taiwan, ROC

Tel: 886 2-717-7175 Fax: 886-2-545-0139

MICROCHIP

EUROPE

United Kingdom

Arizona Microchip Technology Ltd.

Unit 6, The Courtyard

Meadow Bank, Furlong Road

Bourne End, Buckinghamshire SL8 5AJ
Tel: 44-1628-851077 Fax: 44-1628-850259

France

Arizona Microchip Technology SARL

Zone Industrielle de la Bonde

2 Rue du Buisson aux Fraises

91300 Massy, France

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany

Arizona Microchip Technology GmbH
Gustav-Heinemann-Ring 125

D-81739 Muchen, Germany

Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy

Arizona Microchip Technology SRL
Centro Direzionale Colleone

Palazzo Taurus 1 V. Le Colleoni 1

20041 Agrate Brianza

Milan, Italy

Tel: 39-39-6899939 Fax: 39-39-6899883

JAPAN

Microchip Technology Intl. Inc.

Benex S-1 6F

3-18-20, Shin Yokohama

Kohoku-Ku, Yokohama

Kanagawa 222 Japan

Tel: 81-4-5471- 6166 Fax: 81-4-5471-6122

5/8/97

All rights reserved. © 1997, Microchip Technology Incorporated, USA. 5/97

Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or
warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other
intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express
written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip logo and name are registered trademarks
of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.

0 1997 Microchip Technology Inc.

	Introduction
	Theory of Operation
	Charging Strategy
	Algorithm
	Algorithm Parameters:

	Hardware
	Details of the software implementation
	Constant Current Control
	Analog-to-Digital Conversion
	Time Keeping
	Math
	Charging Circuit Bench Results
	Converting the Charger to Work With Other Lead-Aci...
	Conclusions

	References
	Parts List
	Appendix A: LeadAcid.C
	Appendix B: CMP-REF.C
	Appendix C: Timer.C
	Appendix D: MATH32.C
	WORLDWIDE SALES & SERVICE

