

M

How to Use the 24LCS61/62 Software Addressable

Serial EEPROM

AN683

INTRODUCTION
The purpose of this application note is to provide an exam-
ple of how to use the Microchip Technology 24LCS61/62
in a multi board type of system. A hypothetical system is
presented and described, along with the source code to
implement all of the features of the these devices.

SYSTEM DESCRIPTION
The hypothetical system described in this application
note is an industrial controller that can be conÞgured by
adding/removing/changing individual circuit cards. This
system utilizes a high speed parallel bus for normal com-
munication between the individual cards, and an I2C bus
is used for detecting the installed system cards, deter-
mining their conÞguration, and initializing the system
accordingly. After the initial power up sequence deter-
mines the Ôboot conÞgurationÕ, this secondary bus is also
periodically polled looking for new devices/cards.

HARDWARE DESCRIPTION

Figure 1 shows a block diagram of the system. This
application note does not address the entire system,
but only those portions necessary to demonstrate the
code required for a typical implementation using the
24LCS61/62 devices. The system consists of a system
master which controls the I2C bus, and any number of
additional circuit cards.

Each of these circuit cards has either a 24LCS61 or
24LCS62 on it, which allows the system master to iden-
tify the presence of each card, determine the type of
card (e.g. Memory, I/O, Display), and read/write any
necessary conÞguration data. Each circuit card may or
may not have a microcontroller of itÕs own. For those
that do the EDS pin of the 24LCS61/62 device is used
as an input to the microcontroller to tell it that it has
been detected by the system master.

SOFTWARE DESCRIPTION

Figure 2 shows the ßow chart for the system master
node initialization. At the start of the initialization the sys-
tem master enters a software loop which sends the
Assign ID command over the I2C bus and looks for an
acknowledge (ACK) signal, indicating that there is an
unassigned device. If the ACK is detected the system
master then reads the six byte device serial number
which latches the assigned ID into the addressed
24LCS61/62 device. The serial number serves as an
arbitration mechanism only in this system, nothing fur-
ther is done with it after it is read. The system master
then reads the Þrst byte of the 24LCS61/62 EEPROM
memory, which is deÞned to contain the size in bytes of
the EEPROM array. This is so that the system master
can write a time stamp to the last three bytes of the
EEPROM after conÞguration has been completed. Dur-
ing this read the system master sets the EDS pin of the
24LCS61/62 low to signal the microcontroller (if any) on
the circuit card that it has been detected and assigned.

FIGURE 1: SYSTEM BLOCK DIAGRAM

Author: Rick Stoneking
Microchip Technology Inc.

Master System Bus

I2C Bus

Slave Board

EDSM
aster S

ystem
 C

ontroller

Slave Board

EDS

Slave M
icrocontoller

Slave Board

EDS

Slave Board

EDS

24LCS61/62

Slave M
icrocontoller

Slave M
icrocontoller

24LCS61/62

24LCS61/62

24LCS61/62

Slave M
icrocontoller
ã 1998 Microchip Technology Inc. DS00683A-page 1

AN683

FIGURE 2: SYSTEM FLOW FOR MASTER
NODE INITIALIZATION

SOURCE CODE DISCUSSION

Appendix A contains the ÔCÕ source code for the func-
tions necessary to perform the operations described in
the Software Description section above. These func-
tions rely on additional I2C functions that are deÞned in
the sw12c16.lib library created by, and available from,
Microchip Technology. A listing for this library has not
been included in this application note.

The following Þles are required in order to complete the
source code in Appendix A:

The source code was compiled using MPLAB-C v1.21
and has been veriÞed to work. The source code, includ-
ing the required libraries and header Þles, is available
for download from the Microchip website (www.micro-
chip.com).

The following is a discussion of the purpose and oper-
ation of each of the functions in Appendix A.

Main()

This simple function represents the main system mas-
ter control program. This routine sets up the system
master hardware (init_hardware()) and then calls the
sys_init() routine.

Sys_Init()

This routine controls the detection and conÞguration of
any circuit cards that are installed in the system. It per-
forms a while loop that calls the Assign_ID() function,
passing in the id value to be assigned, to determine if
there are any unassigned devices on the bus. If the
Assign_ID() function Þnds a device on the bus the
sys_init() routine then reads the memory size
(address 0) and stores this in the global variable addr
for later use. The variable oe_bit is then set and the
device code is read (address 1). This value is used
determine and execute the proper initialization/conÞgu-
ration code.

After the device conÞguration is Þnished a time stamp
is written to the last three bytes of the array. Before
returning to main() the value of the variable id is decre-
mented so that a subsequent call to the sys_init() rou-
tine, which could be used to check for new devices that
have been added to the system, will assign the next
unused ID number.

Initialize hardware
Call sys_init() to

detect devices on

Assign ID to detected
device

Call Assign_ID
to poll I2C bus for

unassigned
devices

Unassigned
Devices?

exit sys_init routine
back to main()

Read array size code
from addr 0x00

Read device type
code from addr 0x01

Execute device
speciÞc conÞguration

code

Write time stamp
to last three bytes of

array

No

File Name Description

24lcs6x.c Main Þle (listing 1)

swi2c16.h MPLAB-C header Þle

swi2c16.lib MPLAB-C library Þle

delays.h MPLAB-C header Þle

delays.lib MPLAB-C library Þle

math.h MPLAB-C header Þle

17c42a.h MPLAB-C header Þle

Note: the actual code has not been included in this
example but, rather, comments are used to indicate
where this code would go.
DS00683A-page 2 ã 1998 Microchip Technology Inc.

AN683

Write_Byte()

This routine writes a single byte to the 24LCS61/62
device. The address that is to be written to must be
placed in the global variable addr before calling this
function in order for it work properly. The ID number of
the device to be written to, and the data byte that is to be
written are passed in by the calling function. The write is
then initiated by issuing the write command, followed by
the device ID, address byte and data byte.

 After the data byte is sent, a stop condition is generated
to initiate the internal write cycle. The Ack_Poll() routine
is then called to wait for the device to Þnish writing before
continuing.

Read_Byte()

This routine reads a single byte from the 24LCS61/62
device. The device ID number and the address to be
read are passed in by the calling function. The routine
then sets the internal address pointer of the
24LCS61/62 by sending a write command (after ORing
the oe_bit - see Write_Byte() above), followed by the
device ID, and the address. A start condition is then
generated followed by the read command (the oe_bit is
again ORÕd), and the device ID. The data byte is then
read from the I2C bus and returned to the calling func-
tion after generating a stop condition.

Ack_Poll()

This is a simple subroutine that is used after a write
command is sent in order to allow the 24LCS61/62 to
complete an internal write cycle before continuing. This
is done by issuing repeated write commands to the
24LCS61/62 device, whose ID is passed in by the call-
ing function, until an acknowledge is generated by the
24LCS61/62 indicating that it has completed the write
cycle. It should be noted that the oe_bit is ORÕd with the
write command so that the state of the EDS pin is not
inadvertently changed during the polling. After the
acknowledge is received a stop condition is sent before
the routine ends.

Clear_Addr()

This routine issues the Clear Address command to all
24LCS61/62 devices on the bus, which causes them all
to reset their internal ID to 00, and to enter the unas-
signed state. The Assign ID command is followed by a
dummy ID byte, and a stop condition.

Assign_ID()

Checks the bus for, and assigns an ID to, an unassigned
24LCS61/62 device. To do this the Assign ID command
is sent, followed by the ID (which has been passed in by
the calling function). The bus is then checked for an
acknowledge being generated by an unassigned
device. If no ACK is seen the function returns a Ô0Õ to
indicate that no device was found. If an ACK has been
generated, the function then reads the six byte serial

number, generates a stop condition which latches the
assigned ID number into the 24LCS61/62, and returns
a Ô1Õ indicating a device was found and assigned.

init_hardware()

This function initializes the hardware for the simpliÞed
system used to test and validate the operation of the
code in this application note. This hardware uses a
PIC17C4x with SCL and SDA on port pins RC6 and
RC7 respectively. Both pins require an appropriate pul-
lup resistor as detailed in the sw12c16.h Þle.

SUMMARY

This application note has detailed the basics of using
the 24LCS61/62 in a multi board system. Several addi-
tions/enhancements could easily be added including
implementing multi-byte page mode writes to the
24LCS61/62, detecting/handling I2C bus errors, and
creating the necessary code/interrupt to generate a
periodic call from main() to sys_init() in order to detect
and conÞgure newly added devices. The source code
provided was written in ÔCÓ, versus assembly language,
for a couple of reasons. First, the use of ÔCÕ makes the
code more portable so that it can easily be imple-
mented on any one of several microcontrollers. Sec-
ond, it is believed that ÔCÕ is a more ÔreadableÕ and
therefore better serves as an instructional tool than
does assembly language.

ADDITIONAL INFORMATION

24LCS61/62 Device Datasheet; Microchip Technology
Inc.; DS21226

AN676: “Physical Slot Identification Techniques for the
24LCS61/62”; Microchip Technology, Inc.; DS00676

Note: The state of the global variable oe_bit is logically
ORÕd, after being shifted left three bits, with the control
code in order to provide control of the state of the EDS
pin.
ã 1998 Microchip Technology Inc. DS00683A-page 3

AN683

APPENDIX A: SOURCE CODE
/***
* *
* 24LCS6x.c *
* Source code for application note AN683 which demonstrates *
* using the Microchip Technology 24LCS61/62 software *
* addressable I2C Serial EEPROM. *
* *
* 06/xx/98 Original creation R. Stoneking *
* Created and compiled with MPLAB-C V1.21 *
* *
* This code is written to run on a PIC17C4x device with SCL *
* and SDA on PORTC.6 and PORTC.7 respectively. Both of these *
* pins require an external pullup resistor as explained in the *
* swi2c16.h file. *
* *
* This code does not make any attempt run the I2C bus at a *
* set speed, so the code will work independant of the *
* oscillator frequency (at faster speeds additional delays may *
* be required to prevent violating the I2C timing specs. *
* *
***/
#include <17c42a.h>
#include <delays.h>
#include <math.h>
#include <swi2c16.h> /* required header file from PICmicro */
 /* library */
/******************** Function Prototypes************************/
void sys_init(void);
void Clear_ID(void);
char Assign_ID(char);
void Write_Byte(char, char);
char Read_Byte(char, char);
void AckPoll(char);
void init_hardware(void);
/*********** Global Defines**************************************/
#define SET_WP_CMD 0x60
#define READ_CMD 0x61
#define WRITE_CMD 0x62
#define ASN_ADD_CMD 0x64
#define CLR_ADD_CMD 0x66
#define FOUND 1
#define NFOUND 0
/*********** Global Variables************************************/
char temp,
 id,
 oe_bit,
 rxbuf[16],
 addr,
 hour = 5,
 minute = 0x45,
 second = 0x33;

/**/
void main(void)
{
 init_hardware(); /* set up PICmicro */
 Clear_ID();
 sys_init();
 while(1); * loop forever */
} /* end main () */
DS00683A-page 4 ã 1998 Microchip Technology Inc.

AN683

/***
* Name: sys_init *
* Desc: This routine controlls the querrying of the bus, *
* detection and assigning of new devices, and execution *
* of any necessary configuration routines when a new *
* device is found. *
* *
* Inputs: None *
* *
* Setup: None *
* *
* Return: Void *
***/
void sys_init(void)
{
 id = 1; /* start assigned id's at 1 */
 oe_bit = 0; /* EDS pin inactive */
 while(Assign_ID(id) == FOUND)

{
oe_bit = 1; /* set EDS pin low while

addressing device */
addr = Read_Byte(id,0x00); /* read byte 0 for array size */
temp = Read_Byte(id,0x01); /* read byte 1 for device code */
switch(temp) /* execute module dependant code */
{
case 0x01: /* Memory Module */

 /* add code here for Memory Module */
 break;

case 0x02: /* I/O Module */
 /* add code here for I/O Module */
 break;

case 0x03: /* Display Module */
 /* add code here for Display Module */
 break;

 default:
 /* add code here for unknown Module codes */
 break;
 }
 Write_Byte(id, second); /* write time stamp to last 3
 bytes of array */
 addr--;
 Write_Byte(id, minute);
 addr--;
 oe_bit = 0; /* set EDS pin high during
 last command */
 Write_Byte(id, hour);
 id++;
 } /* end while() */
 id--; /* decrement id by one so next
 call to sys_init uses correct id */
} /* end sys_init() */
/***
* Name: Write_Byte *
* Desc: Write the data byte passed by the calling funtion to *
* the device specified in id, at the location pointed to*
* by the global variable addr. *
* *
* Inputs: id - the id of the device on the bus to be written to *
* data_byte - byte to be written to the array *
* *
* Setup: Global variable addr must be set before entry *
* *
* Return: Void *
***/
ã 1998 Microchip Technology Inc. DS00683A-page 5

AN683

void Write_Byte(char wr_id, char data_byte)
{
 RestartI2C();
 temp = WriteI2C(WRITE_CMD | (oe_bit << 3));
 AckI2C();
 temp = WriteI2C(wr_id);
 AckI2C();
 temp = WriteI2C(addr); /* address byte */
 AckI2C();
 temp = WriteI2C(data_byte); /* data byte */
 AckI2C();
 StopI2C();
 AckPoll(wr_id); /* wait for write cycle to finish */
} /* end Write_Byte() */
/***
* Name: Read_Byte *
* Desc: Reade the data from the device specified by id at the *
* address specified by the paramater addr. *
* *
* Inputs: id - the id of the device on the bus to be written to *
* addr - byte to be read in the array *
* *
* Setup: None *
* *
* Return: Data byte read *
***/
char Read_Byte(char rd_id, char loc)
{

PORTD.0 = 1;
StartI2C();
temp = WriteI2C(WRITE_CMD | (oe_bit << 3));
AckI2C();
temp = WriteI2C(rd_id);
AckI2C();
temp = WriteI2C(loc); /* address byte */
AckI2C();
NOP();
RestartI2C();
temp = WriteI2C(READ_CMD | (oe_bit << 3));
AckI2C();
temp = WriteI2C(rd_id);
AckI2C();
temp=ReadI2C();
AckI2C();
StopI2C();
return I2C_BUFFER;

} /* end Read_Byte() */
/***
* Name: AckPoll *
* Desc: Send repeated Write commands and check for DUTk. *
* Return when ack received. If no ack is received this *
* will loop indefinately. *
* *
* Inputs: Id of device to be polled *
* *
* Setup: None *
* *
* Return: Void *
***/
void AckPoll(char ack_id)
{
 do
 {
 RestartI2C();
 temp = WriteI2C(WRITE_CMD | (oe_bit << 3));
 AckI2C();
 temp = WriteI2C(ack_id);
 AckI2C();
DS00683A-page 6 ã 1998 Microchip Technology Inc.

AN683

}while(BUS_STATUS.2);
StopI2C();

} /* end AckPoll() */
/***
* Name: Clear_Addr() *
* Desc: Send Clear Address Command to all devices on the bus, *
* resetting all device ID registers to 00. *
* *
* Inputs: None *
* *
* Setup: None *
* *
* Return: Void *
***/
void Clear_ID()
{

RestartI2C();
temp = WriteI2C(CLR_ADD_CMD);
AckI2C();
temp = WriteI2C(0x00);
AckI2C();
StopI2C();

}
/***
* Name: Assign_ID *
* Desc: Sends Assign ID command over the I2C bus and looks for*
* the acknowlege from an unassigned device. If a device*
* is found, the six byte serial number is read into *
* the rxbuf[] array for use by the calling function. *
* *
* Inputs: Id to be assigned to device if detected *
* *
* Setup: None *
* *
* Return: 1 if device is found, 0 if no device found *
***/
char Assign_ID(char new_id)
{

RestartI2C();
temp = WriteI2C(ASN_ADD_CMD);
AckI2C();
temp = WriteI2C(new_id);
AckI2C();
if (BUS_STATUS.2) /* Check for unassigned device on bus */
return NFOUND; /* and exit if none */
temp = getsI2C(rxbuf,6); /* Otherwise read SN */
StopI2C();
return FOUND;

}
void init_hardware()

{
SPBRG = 0x0f; /* Use 0x07 for 19.2Kbps, 0x0f for 9600 bps */
TXSTA = 0x20; /* Async mode, 8 Data bits, txen = 1 */
RCSTA = 0x90; /* 8 Data bits, spen = 1, cren = 1 */
PORTB = 0x0;
DDRB = 0xff; /* Port B all inputs */
PORTC = 0xff; /* Set Port C to all ones */
DDRC = 0xff; /* Port C all outputs for now */
PORTD = 0;
DDRD = 0x0; /* Port D all outputs */

 DDRE = 0xff; /* Port E all inputs */
PIR = 0; /* Clear any pending interrupts */
CPUSTA.GLINTD = 1; /* Disable global interrupts */
} /* end init_hardware() */

#include <swi2c16.lib>
#include <delays.lib>
ã 1998 Microchip Technology Inc. DS00683A-page 7

Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed
by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products
as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip
logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.

 1999 Microchip Technology Inc.

All rights reserved. © 1999 Microchip Technology Incorporated. Printed in the USA. 11/99 Printed on recycled paper.

AMERICAS
Corporate Office
Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-786-7200 Fax: 480-786-7277
Technical Support: 480-786-7627
Web Address: http://www.microchip.com

Atlanta
Microchip Technology Inc.
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Boston
Microchip Technology Inc.
5 Mount Royal Avenue
Marlborough, MA 01752
Tel: 508-480-9990 Fax: 508-480-8575
Chicago
Microchip Technology Inc.
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
Microchip Technology Inc.
4570 Westgrove Drive, Suite 160
Addison, TX 75248
Tel: 972-818-7423 Fax: 972-818-2924
Dayton
Microchip Technology Inc.
Two Prestige Place, Suite 150
Miamisburg, OH 45342
Tel: 937-291-1654 Fax: 937-291-9175
Detroit
Microchip Technology Inc.
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Los Angeles
Microchip Technology Inc.
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
New York
Microchip Technology Inc.
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

AMERICAS (continued)
Toronto
Microchip Technology Inc.
5925 Airport Road, Suite 200
Mississauga, Ontario L4V 1W1, Canada
Tel: 905-405-6279 Fax: 905-405-6253

ASIA/PACIFIC
Hong Kong
Microchip Asia Pacific
Unit 2101, Tower 2
Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2-401-1200 Fax: 852-2-401-3431
Beijing
Microchip Technology, Beijing
Unit 915, 6 Chaoyangmen Bei Dajie
Dong Erhuan Road, Dongcheng District
New China Hong Kong Manhattan Building
Beijing 100027 PRC
Tel: 86-10-85282100 Fax: 86-10-85282104
India
Microchip Technology Inc.
India Liaison Office
No. 6, Legacy, Convent Road
Bangalore 560 025, India
Tel: 91-80-229-0061 Fax: 91-80-229-0062
Japan
Microchip Technology Intl. Inc.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa 222-0033 Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Shanghai
Microchip Technology
RM 406 Shanghai Golden Bridge Bldg.
2077 Yan’an Road West, Hong Qiao District
Shanghai, PRC 200335
Tel: 86-21-6275-5700 Fax: 86 21-6275-5060

ASIA/PACIFIC (continued)
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore 188980
Tel: 65-334-8870 Fax: 65-334-8850
Taiwan, R.O.C
Microchip Technology Taiwan
10F-1C 207
Tung Hua North Road
Taipei, Taiwan, ROC
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5858 Fax: 44-118 921-5835
Denmark
Microchip Technology Denmark ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Arizona Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Arizona Microchip Technology GmbH
Gustav-Heinemann-Ring 125
D-81739 München, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy
Arizona Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883

11/15/99

WORLDWIDE SALES AND SERVICE

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999. The
Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs and microperipheral
products. In addition, Microchip’s quality
system for the design and manufacture of
development systems is ISO 9001 certified.

	Introduction
	System Description
	Hardware Description
	Software Description
	Source Code Discussion
	Summary
	Additional Information

