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INTRODUCTION

The PIC16F87X family of microcontrollers has the abil-
ity to write to their own program memory. This feature
allows a small bootloader program to receive and write
new firmware into memory. This application note
explains how this can be implemented and discusses
the features that may be desirable.

In its most simple form, the bootloader starts the user
code running, unless it finds that new firmware should
be downloaded. If there is new firmware to be down-
loaded, it gets the data and writes it into program mem-
ory. There are many variations and additional features
that can be added to improve reliability and simplify the
use of the bootloader, some of which are discussed in
this application note.

The general operation of a bootloader is discussed in
the OPERATION section. Appendix A contains assem-
bly code for a bootloader developed for the PIC16F877
and key aspects of this bootloader are described in the
IMPLEMENTATION section.

For the purpose of this application note, the term “boot
code” refers to the bootloader code that remains per-
manently in the microcontroller and the term “user
code” refers to the user’s firmware written into FLASH
memory by the boot code.

FEATURES

The more common features a bootloader may have are
listed below:

* Code at the Reset location.

* Code elsewhere in a small area of memory.

* Checks to see if the user wants new user code to
be loaded.

» Starts execution of the user code if no new user
code is to be loaded.

* Receives new user code via a communication
channel if code is to be loaded.

« Programs the new user code into memory.

OPERATION

The boot code begins by checking to see if there is new
user code to be downloaded. If not, it starts running the
existing user code. If there is new user code to be
downloaded, the boot code receives and writes the
data into program memory. There are many ways that
this can be done, as well as many ways to ensure reli-
ability and ease of use.

Integrating User Code and Boot Code

The boot code almost always uses the Reset location
and some additional program memory. It is a simple
piece of code that does not need to use interrupts;
therefore, the user code can use the normal interrupt
vector at 0x0004. The boot code must avoid using the
interrupt vector, so it should have a program branch in
the address range 0x0000 to 0x0003.

The boot code must be programmed into memory
using conventional programming techniques, and the
configuration bits must be programmed at this time.
The boot code is unable to access the configuration
bits, since they are not mapped into the program mem-
ory space. Setting the configuration bits is discussed in
the next section.

In order for the boot code to begin executing the user
code, it must know where the code starts. Since the
boot code starts at the Reset vector, the user code can-
not start at this location. There are two methods for
placing the starting point of the user code.

One method is to use an ORG directive to force the user
code to start at a known location, other than the Reset
vector. To start executing the user code, the boot code
must branch to this fixed location, and the user code
must always use this same location as its start address.

An alternative method is to start the user code at the
normal Reset vector and require that the user code has
a goto instruction in the first four instructions to avoid
the interrupt vector. These four instructions can then be
relocated by the boot code and programmed into the
area of program memory used by the boot code. This
simplifies the development of code for use with the
bootloader, since the user code will run when pro-
grammed directly into the chip without the boot code
present. The boot code must take care of paging and
banking so the normal Reset conditions apply before
executing the relocated code.
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FIGURE 1: INTEGRATING USER CODE WITH BOOT CODE
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Configuration Bits

The configuration bits cannot be changed by the boot
code since they are not mapped into the program mem-
ory space. This means that the following configuration
options must be set at the time that the boot code is
programmed into the device and cannot be changed:

CPx Program Memory Code Protection Enable
DEBUG In-Circuit Debugger Mode Enable

WRT Program Memory Write Enable

CPD Data EEPROM Code Protection Enable
LVP Low Voltage In-Circuit Programming Enable
BODEN Brown-out Reset Enable

PWRTE Power-up Timer Enable

WDTE Watchdog Timer Enable

FOSCx Oscillator Selection

Most of these configuration options are hardware or
design-dependent, and being unable to change them
when the user code changes is of no consequence.

The various PIC16F87X devices have different code
protection implementations. Please consult the appro-
priate data sheet for details.

Some devices (such as the PIC16F877), can code pro-
tect part of the program memory and prevent internal

writes to this protected section of memory. This can be
used to protect the boot code from being overwritten,
but also prevents the user code from being code pro-
tected, however.

On some devices, code protecting all the program
memory still allows internal program memory write
cycles. This provides security against the user code
being read out of the chip, but does not allow the boot
code to be protected from being overwritten.

Data EEPROM Code Protection Enable would nor-
mally not need to be set, unless data is programmed
into the data EEPROM when the boot code is originally
programmed and this data needs to be protected from
being overwritten by the user code.

Program Memory Write Enable must be enabled for the
boot code to work, since it writes to program memory.
Low Voltage In-Circuit Serial Programming (ICSP™)
enable only needs to be set if the user wishes to pro-
gram the PICmicro MCU in-circuit, using logic level sig-
nals on the RB3, RB6 and RB7 pins. Since the purpose
of the boot code is to program user code into the PIC-
micro MCU, in most cases, it would be redundant to
have facilities for low voltage ICSP.

If the Watchdog Timer is enabled, then the boot code
must be written to support the Watchdog Timer and all
user code will have to support the Watchdog Timer.

DS00732A-page 2

Preliminary

© 2000 Microchip Technology Inc.



AN732

Determining Whether to Load New Code or to
Execute User Code

After a Reset, the boot code must determine whether to
download new user code. If no download is required,
the bootcode must start execution of existing user
code, if available.

There are many ways to indicate whether or not new
user code should be downloaded. For example, by test-
ing a jumper or switch on a port pin, polling the serial
port for a particular character sequence, or reading an
address on the I2C™ bus. The particular method cho-
sen depends on the way that user code is transferred
into the microcontroller. For example, if the new user
code is stored on an 1°C EEPROM that is placed in a
socket on the board, then an address in the EEPROM
could be read to determine whether a new EEPROM is
present.

If an error occurred while downloading new user code,
or the bootloader is being used for the first time, there
might not be valid user code programmed into the
microcontroller. The boot code should not allow faulty
user code to start executing, because unpredictable
results could occur.

Receiving New User Code to Load into
Program Memory

There are many ways that the microcontroller can
receive the new firmware to be written into program
memory. A few examples are from a PC over a serial
port, from a serial EEPROM over an I2C or SPI™ bus,
or from another microcontroller through the parallel
slave port.

The boot code must be able to control the reception of
data, since it cannot process any data sent to it while it
is writing to its own program memory. In the case of
data being received via RS-232, there must be some
form of flow control to avoid data loss.

The data received by the boot code will usually contain
more than just program memory data. It will normally
contain the address to which the data is to be written
and perhaps a checksum to detect errors. The boot
code must decode, verify and store the data, before
writing it into program memory. The available RAM
(GPR registers) of the device limits the amount of data
that can be received before writing it to program
memory.

Programming the FLASH Program Memory

The PIC16F87X devices have special function regis-
ters that are used to write data to program memory.
There is a specific sequence of writes to these registers
that must be followed to reduce the chances of an unin-
tended program memory write cycle occurring.
Because code cannot be executed from the FLASH
program memory while it is being written, program exe-
cution halts for the duration of the write cycle. Program
memory is written one word at a time.

Error Handling

There are several things that can go wrong during exe-
cution of the boot code or user code. The bootloader
should handle the following error conditions:

* No valid user code written into the chip.
e Error in incoming data.

* Received user code does not have any code at its
Reset vector.

* Received user code overlaps boot code.

¢ User code causes execution into the boot code
area.

If the bootloader is being used for the first time, or if the
user code is partially programmed because of a previ-
ous error, there might not be valid user code pro-
grammed into the microcontroller. The boot code
should not allow potentially faulty user code to start
executing.

The transfer of data can be interrupted, which will
cause the boot code to stop receiving data. There are
several ways to handle this depending on how the data
is being received. For example, the boot code may be
able to time-out and request the data to be sent again.
The simplest method is to wait, trying to receive more
data with no time-out, until the user intervenes and
resets the device. Since the boot code needs to leave
the most possible program memory space for the user
code and also be reliable, the smallest, simplest imple-
mentation is often the best.

Incoming data may be corrupted by noise or some
other temporary interruption, and this should be
detected, otherwise, incorrect data could be pro-
grammed. A checksum or other error detection method
can be used.

Incorrect use of flow control can result in data being
sent to the PICmicro MCU while it is not ready to
receive data. This can cause overrun errors that should
be handled by the boot code. Once an overrun has
occurred, the data is lost and this is essentially the
same as a data transfer interruption, discussed above.

In some cases, data could be sent to the microcontrol-
ler before the boot code is running, causing part of the
data to be lost. If this type of error is possible, then it
should be detected. This error may manifest itself as
user code that does not seem to have any code at the
Reset location and can be detected by checking the
addresses being programmed. An alternative is to gen-
erate a checksum on all the code that is written into pro-
gram memory and transmit this to the user for
verification, after programming has been completed.
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The code developer should take care that the user
code does not use the same program memory space
that the boot code uses. The exception is the user code
at the Reset location that can be relocated, as
explained earlier. If the user code does try to use pro-
gram memory that contains boot code, the boot code
should detect the conflicting address and not overwrite
itself. In some devices, part of the program memory
can be code protected to prevent internal writes to the
part of the memory that contains the main boot code.
Note that this does not apply to all PIC16F87X devices.

Faulty user code, or a brown-out condition that corrupts
the program counter, can cause execution to jump to
an unprogrammed memory location and possibly run
into the start of the boot code. If the user code at the
Reset location is being relocated, as explained earlier,
then execution can enter the boot code area if a pro-
gram branch does not occur in these four relocated
instructions. The boot code should trap the program
execution to avoid these errors from causing any unin-
tended operation.

When an error is detected, it is useful to indicate this in
some way. This can be as simple as turning on an LED,
or sending a byte out the serial port. If the system
includes a display and the display drivers are incorpo-
rated into the boot code, then more sophisticated error
messages can be used.
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FIGURE 2: FLOWCHART FOR BOOTLOADER
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SCHEMATIC SHOWING SERIAL PORT AND TEST PIN

FIGURE 3:
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IMPLEMENTATION

How this Bootloader Works

The boot code in Appendix A implements a bootloader
in a PIC16F877 device. It uses the USART to receive
data with hardware handshaking, tests a pin to decide
if new user code should be received and includes many
of the features discussed in this application note.

Integrating User Code and Boot Code

The code at the Reset location (ResetVector) writes
to PCLATH. To set the page bits, it then jumps to the
rest of the boot code in upper memory. The main code
is in the upper 224 bytes of memory starting at address
0x1F20 (StartOfBoot). The first instructions at this
location trap accidental entry into the boot code. The
main bootloader routine starts at the address labeled
Main.

The boot code requires that the user code includes a
goto instruction in the first four locations after the
Reset vector and relocates these four instructions into
the boot code section (StartUserCode). This simpli-
fies the development of code for use with the boot-
loader, since the same user code will also run when
programmed directly into the chip, without the boot
code present. The boot code changes to bank 0 and
clears PCLATH before executing the relocated code,
so that the normal Reset conditions apply. If a program
branch does not occur in the four relocated instruc-
tions, then program execution is trapped in an endless
loop to avoid any unintended operation.

The boot code must be programmed into the
PIC16F877 using conventional programming tech-
nigues and the configuration bits are programmed at
the same time. The configuration bits are defined with
a __ CONFIG directive and cannot be accessed by the
boot code, because they are not mapped into the pro-
gram memory space. The boot code does not use a
Watchdog Timer.

Determining Whether to Load new Code or to
Execute User Code

The boot code tests port pin RBO to determine whether
new user code should be downloaded. If a download is
required, then the boot code branches to the Loader
routine that receives the data and writes it into program
memory.

If pin RBO does not indicate that new user code should
be loaded, then a program memory location (labeled
CodeStatus) is read with routine FlashRead to
determine whether there is valid user code in the
device. If there is valid user code, the boot code trans-
fers execution to the user code by branching to location
StartUserCode. Otherwise, execution is trapped in
an endless loop to avoid this error from causing any
unintended operation.

Receiving New User Code to Load into
Program Memory

The boot code receives the new firmware as a standard
Intel® hex file (znHx8M format), using the USART in
Asynchronous Receiver mode (hex format defined in
Appendix B). It is assumed that a PC will be used to
send this file via an RS-232 cable, connected to a COM
port. Hardware handshaking allows the boot code to
stop the PC from transmitting data while FLASH pro-
gram memory is being written. Since the PICmicro
device halts program execution while the FLASH write
occurs, it cannot read data from the USART during this
time.

Hardware handshaking (described in Appendix C) is
implemented using port pin RB1 as the RTS output and
RB2 as the CTS input. The USART is set to 8-bit Asyn-
chronous mode at 9600 baud in the SerialSetup
routine. The SerialReceive routine enables trans-
mission with the RTS output and waits until a data byte
has been received by the USART, before returning with
the data. The SerialTransmit routine checks the
CTS input until a transmission is allowed and then
sends a byte out the USART. This is used for transmit-
ting progress indication data back to the PC.

The boot code receives the hex file, one line at a time
and stops transmission after receiving each line, while
received data is programmed into program memory.

Decoding the Hex File

The boot code remains in a loop, waiting until a colon
is received. This is the first character of a line of the hex
file. The following four pairs of characters are received
and converted into bytes, by calling the GetHexByte
routine. The number of bytes (divided by two to get the
number of words) and the address (divided by two to
get a word address) are saved, and the record type is
checked for a data record, or end of file record.

If the record type shows that the line contains program
memory data, then this data is received, two pairs of
characters at a time (using the GetHexByte routine),
and is stored in an array. The checksum at the end of
the line is received and checked, to verify that there
were not any errors in the line.

Once the hex file line has been received, hardware
handshaking is used to stop further transmission, while
the data is written into the program memory. The <CR>
and <LF> characters that are sent at the end of the line
are ignored. This gives the handshaking time to take
effect by ignoring the byte being transmitted, when the
handshaking signal is asserted. Once the data from the
line has been programmed, the following lines are
received and programmed in the same way, until the
line indicating the end of the file has been received. A
success indication ‘S’ is then transmitted out the
USART (by the FileEnd routine) and the boot code
waits for a Reset.

© 2000 Microchip Technology Inc.
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Programming the FLASH Program Memory

Data is written to the FLASH program memory using
special function registers. The address is written to the
EEADR and EEADRH registers and the first two bytes
of data are written to EEDATA and EEDATH. The
FlashWrite routine is then executed, which writes
the data into program memory. The address is then
incremented and the next two data bytes are written.
This is repeated until all the data from the line of the hex
file has been programmed into the FLASH program
memory.

Error Handling

There are several things that can go wrong during exe-
cution of the boot code or user code, and a number of
these error conditions are handled by the boot code. If
an error occurs, the boot code traps it by executing an
infinite loop, until the user intervenes and resets the
device. If an error is detected in the incoming data, then
a failure indication ‘F’ is transmitted. This does not
occur in the case of an overflow error, or if the data
transmission is halted.

If the bootloader is being used for the first time, or if the
user code is partially programmed because of a previ-
ous error, there might not be valid user code pro-
grammed into the microcontroller. The boot code
handles this by writing a status word (0x3fff) at a
location labeled CodeStatus, before programming
the FLASH device, and then writing a different status
word (0x0000) to this same location, when program-
ming of the user code has been completed. The boot
code tests this location and only starts execution of the
user code, if it sees that the user code was successfully
programmed. When the boot code is originally pro-
grammed into the PICmicro MCU, the status word indi-
cates that there is not valid user code in the device.

The transfer of data can be interrupted. In this case, the
boot code waits, trying to receive more data with no
time-out, until the user intervenes and resets the
device. Noise, or a temporary interruption, may corrupt
incoming data. The Intel hex file includes a checksum
on each line and the boot code checks the validity of
each line by verifying the checksum.

Incorrect use of flow control can result in data being
sent to the PIC16F877, while it is not ready to receive
data. This can cause an overrun error in the USART.
Once an overrun has occurred, the USART will not
move any new data into the receive FIFO and the boot
code will be stuck in a loop waiting for more data. This
effectively traps the error until the user intervenes by
resetting the device.

If the user starts transmitting a hex file before the boot
code is running, the boot code may miss the first lines
of the file. Since all the lines of a hex file have the same
format, it is not normally possible to determine whether
the line being received is the first line of the hex file.
However, since MPASM generates hex files with
addresses in ascending order, the first valid line of the

hex file should contain the code for the Reset vector
which is checked by the boot code.

The user code may try to use program memory loca-
tions that contain boot code. This is detected by check-
ing the address being programmed and detecting
conflicting addresses. The boot code will not overwrite
itself and is not code protected.

Faulty user code, or noise that corrupts the program
counter, can cause execution to jump to an unpro-
grammed memory location and possibly run into the
start of the boot code. The first instructions in the boot
code are an infinite loop that traps execution into the
boot code area.

Because the first four instructions in program memory
are relocated in the boot code implementation, there
must be a program branch within these four instruc-
tions. If there is no program branch, then execution is
trapped by the boot code.

Using the Bootloader
The procedure for using the bootloader is as follows:

* On the PC, set up the serial port baud rate and
flow control (hardware handshaking).

» Connect the serial port of the PIC16F87X device
to the serial port of the PC.

* Press the switch to pull pin RBO low.

« Power up the board to start the boot code
running.

¢ The switch on RBO can be released if desired.

* From the PC, send the hex file to the serial port.

* A period ‘" will be received from the serial port for
each line of the hex file that is sent.

« An ‘S’ or ‘F’ will be received to indicate success or
failure.

e The user must handle a failure by resetting the
board and starting over.

* Release the switch to set pin RBO high.

e Power-down the board and power it up to start the
user code running.

On the PC, there are several ways to set up the serial
port and to transfer data. This also differs between
operating systems.

A terminal program allows the user to set up and send
data to a serial port. In most terminal programs, an
ASCII or text file can be sent and this option should be
used to send the hex file. A terminal program will also
show data received on the serial port and this allows
the user to see the progress ‘.’ indicators and the suc-
cess ‘S’ or failure ‘F’ indicators. There are many termi-
nal programs available, some of which are available
free on the Internet. This boot code was tested using
Tera Term Pro, Version 2.3. The user should be aware
that some popular terminal programs contain bugs.
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A serial port can be set up in a DOS window, using the
MODE command and a file can be copied to a serial
port, using the COPY command. When using Win-
dows® 95/98, the MODE command does not allow the
handshaking signals to be configured. This makes it
difficult to use the COM port in DOS. When using Win-
dows NT® or Windows 20002, the following commands
can be used to send a hex file named £ilename.hex
to serial port COM1.:

MODE COM1l: BAUD=9600 PARITY=N DATA=8
STOP=1 to=off xon=0ff odsr=off
octs=on dtr=off rts=on idsr=off

COPY filename.hex COM1:
Resources Used

The boot code coexists with the user code on the
PIC16F877 and many of the resources used by the
boot code can also be used by the user code. The boot
code uses the resources listed in Table 1.

TABLE 1: RESOURCES USED BY THE

BOOT CODE
Resource Amount
Program memory 224 words
Data memory 72 bytes
1/O pins 5 pins
Peripherals USART

The program memory used by the boot code cannot be
used for user code, although it is possible to call some
of the subroutines implemented in the boot code to
save space. The user code can use all the data
memory.

The USART can be used by the user code with the two
I/O pins for the USART and the 1/O pins used for hand-
shaking. The I/O pin used to indicate that the boot code
should load new user code, is connected to a switch or
jumper. This can be isolated with a resistor and used as
an output, so that it is possible to use all the 1/O pins
used by the bootloader.

In summary, all resources used by the boot code,
except program memory, can also be used by the user
code.

CONCLUSION

Using a bootloader is an efficient way to allow firmware
upgrades in the field. Less than 3% of the total program
memory is used by the boot code and the entire pro-
gram memory available on a PIC16F877 can be pro-
grammed in less than one minute at 19,200 baud.

The cost of fixing code bugs can be reduced with a
bootloader. Products can be upgraded with new fea-
tures in the field, adding value and flexibility to the prod-
ucts. The ability to upgrade in the field is an added
feature and can enhance the value of a product.
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APPENDIX B: HEX FILE FORMAT

MPASM generates an 8-bit Intel hex file (INHX8M) by
default. The lines of this hex file all have the following
format:

:BBAAAATTHHHH.... HHCC

A colon precedes each line and is followed by hexadec-
imal digits in ASCII format.

BB is a 2-digit hexadecimal byte count representing the
number of data bytes that will appear on the line. This
is @ number from 0x00 to 0x10 and is always even
because the PIC16F87X parts have a 14-bit wide
memory and use two bytes for every program memory
word.

AAAA is a 4-digit hexadecimal address representing the
starting byte address of the data bytes that follow. To
get the actual program memory word address, the byte
address must be divided by two.

TT is a 2-digit hexadecimal record type that indicates
the meaning of the data on the line. It is 0x00 for a reg-
ular data record and 0x01 for an end of file record. The
boot code ignores all other record types.

HH are 2-digit hexadecimal data bytes that correspond
to addresses, incrementing sequentially from the start-
ing address earlier in the line. These bytes come in low
byte, high byte pairs, corresponding to each 14-bit pro-
gram memory word.

cc is a 2-digit hexadecimal checksum byte, such that

the sum of all bytes in the line including the checksum,
is a multiple of 256. The initial colon is ignored.

© 2000 Microchip Technology Inc. Prelimin ary
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The code in Example B-1 will generate a line in a hex
file as shown in Figure B-1.

EXAMPLE B-1: CODE TO GENERATE A HEX FILE

ORG 0x17A
movlw 0xXFF

movwf PORTB

bsf STATUS, RPO
movwf TRISA

clrf TRISB

becf STATUS, RPO

FIGURE B-1: LINE OF HEX FILE

:0CO02F400FF30860083168500860183120F

Checksum is 0x0F

0x0C + 0x02 + O0xF4 + 0x00 + OxFF + 0x30 +
0x86 + 0x00 + 0x83 + 0x16 + 0x85 + 0x00 +
0x86 + 0x01 + 0x83 + 0x1l2 + OxOF = 0x0500

Result of addition® mod 256 is zero

Second program memory word is 0x0086
This corresponds to an instruction MOVWF 0x06®

First program memory word is 0x30FF
This corresponds to an instruction MOVLW O0xFF

Record type is 0x00 indicating a regular data record

Address of first program memory word is 0x02F4 + 2 = 0x017A

v
Number of data bytes is 0x0C

Number of program memory words is 0x0C + 2 = 0x06

Note 1: The calculation to test the checksum adds every byte (pair of digits) in the line of the hex file, including
the checksum itself.

2: The label PORTB is defined as 0x06 in the standard include file for the PIC16F877.

DS00732A-page 22 Prelimin ary © 2000 Microchip Technology Inc.
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APPENDIX C: RS-232 HARDWARE HANDSHAKING SIGNALS

Understanding hardware flow control can be confusing,
because of the terminology used and the slightly differ-
ent way that handshaking is now implemented, com-
pared to the original specification.

RS-232 hardware handshaking was specified in terms
of communication between Data Terminal Equipment
(DTE) and Data Communications Equipment (DCE).
The DTE (e.g., computer terminal) was always faster
than the DCE (e.g., modem) and could receive data
without interruption. The hardware handshaking proto-
col required that the DTE would request to send data to
the DCE (with the request to send RTS signal) and that
the DCE would then indicate to the DTE that it was
cleared to send data (with the clear to send CTS sig-
nal). Both RTS and CTS were, therefore, used to con-
trol data flow from the DTE to the DCE.

The Data Terminal Ready (DTR) signal was defined so
that the DTE could indicate to the DCE that it was
attached and ready to communicate. The Data Set
Ready (DSR) signal was defined to enable the DCE to
indicate to the DTE that it was attached and ready to
communicate. These are higher level signals not gen-
erally used for byte by byte control of data flow,
although they can be used for this purpose.

Most RS-232 connections use 9-pin DSUB connectors.
A DTE uses a male connector and a DCE uses a
female connector. The signal names are always in
terms of the DTE, so the RTS pin on the female con-
nector of the DCE is an input and is the RTS signal from
the DTE.

Over time, the clear distinction between the DTE and
DCE has been lost. In many instances, two DTE
devices are connected together. In other cases, the
DCE device is able to send data at a rate that is too
high for the DTE to receive continuously. In practice,
the DTR output of the DTE has come to be used to con-
trol the flow of data to the DTE and now indicates that
the DCE (or other DTE) may send data. It no longer
indicates a request to send data to the DCE.

Itis common for a DTE to be connected to another DTE
(e.g., two computers), and in this case, they will both
have male connectors and the cable between them will
have two female connectors. This is known as a null
modem cable. The cable is usually wired in such a way
that each DTE looks like a DCE to the other DTE. To
achieve this, the RTS output of one DTE is connected
to the CTS input of the other DTE and vice versa. Each
DTE device will use its RTS output to allow the other
DTE device to transmit data and will check its CTS
input to determine whether it is allowed to transmit
data.

FIGURE C-1: DTE TO DCE CONNECTION

@
DSR input —6@ < gig ® @ DSR output—@w
RXD input ——Q@ < ® RXD output———Q2
RTS output—~?) RTS , @ RTS input— @
TXD output——@® -cl?_(rg > ©) TXD input——@®)
CTS input —® < ® CTS output—®
DTR output—g@ DTR ® @ DTR input—g@

GND GND

Data Terminal Equipment
DSUB9 male connector

DTE to DCE RS-232 cable
DSUB9 female to DSUB9 male connector

Data Communication Equipment
DSUB9 female connector

Data Terminal Equipment
DSUB9 male connector

FIGURE C-2: DTE TO DTE CONNECTION

@ GND GND———<®)
DSR input — DSR “ pR(© ©)
RXD input ——Q RXD « | @ DTR output———@
RTS output—~?) RTS > CTS ® CTS input—+®
TXD output———@®) TXD TXD ® TXD output———@®)
CTS input —-® (D:ig < 5;3 @ RTS output—-D
DTR output——@ > ® RXD input———2

©) I—bﬁ DSR input—

GND———<6) GND @ @

DTE to DTE RS-232 null modem cable
DSUB9 female to DSUB9 female connector

Data Terminal Equipment
DSUB9 male connector
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