MICROCHIP

AN732

| mplementing a Bootloader for the PIC16F87X

Author: Mike Garbutt
Microchip Technology Inc.

INTRODUCTION

The PIC16F87X family of microcontrollers has the abil-
ity to write to their own program memory. This feature
allows a small bootloader program to receive and write
new firmware into memory. This application note
explains how this can be implemented and discusses
the features that may be desirable.

In its most simple form, the bootloader starts the user
code running, unless it finds that new firmware should
be downloaded. If there is new firmware to be down-
loaded, it gets the data and writes it into program mem-
ory. There are many variations and additional features
that can be added to improve reliability and simplify the
use of the bootloader, some of which are discussed in
this application note.

The general operation of a bootloader is discussed in
the OPERATION section. Appendix A contains assem-
bly code for a bootloader developed for the PIC16F877
and key aspects of this bootloader are described in the
IMPLEMENTATION section.

For the purpose of this application note, the term “boot
code” refers to the bootloader code that remains per-
manently in the microcontroller and the term “user
code” refers to the user’s firmware written into FLASH
memory by the boot code.

FEATURES

The more common features a bootloader may have are
listed below:

* Code at the Reset location.

* Code elsewhere in a small area of memory.

* Checks to see if the user wants new user code to
be loaded.

» Starts execution of the user code if no new user
code is to be loaded.

* Receives new user code via a communication
channel if code is to be loaded.

« Programs the new user code into memory.

OPERATION

The boot code begins by checking to see if there is new
user code to be downloaded. If not, it starts running the
existing user code. If there is new user code to be
downloaded, the boot code receives and writes the
data into program memory. There are many ways that
this can be done, as well as many ways to ensure reli-
ability and ease of use.

Integrating User Code and Boot Code

The boot code almost always uses the Reset location
and some additional program memory. It is a simple
piece of code that does not need to use interrupts;
therefore, the user code can use the normal interrupt
vector at 0x0004. The boot code must avoid using the
interrupt vector, so it should have a program branch in
the address range 0x0000 to 0x0003.

The boot code must be programmed into memory
using conventional programming techniques, and the
configuration bits must be programmed at this time.
The boot code is unable to access the configuration
bits, since they are not mapped into the program mem-
ory space. Setting the configuration bits is discussed in
the next section.

In order for the boot code to begin executing the user
code, it must know where the code starts. Since the
boot code starts at the Reset vector, the user code can-
not start at this location. There are two methods for
placing the starting point of the user code.

One method is to use an ORG directive to force the user
code to start at a known location, other than the Reset
vector. To start executing the user code, the boot code
must branch to this fixed location, and the user code
must always use this same location as its start address.

An alternative method is to start the user code at the
normal Reset vector and require that the user code has
a goto instruction in the first four instructions to avoid
the interrupt vector. These four instructions can then be
relocated by the boot code and programmed into the
area of program memory used by the boot code. This
simplifies the development of code for use with the
bootloader, since the user code will run when pro-
grammed directly into the chip without the boot code
present. The boot code must take care of paging and
banking so the normal Reset conditions apply before
executing the relocated code.

© 2000 Microchip Technology Inc.

Preliminary

DS00732A-page 1

AN732

FIGURE 1: INTEGRATING USER CODE WITH BOOT CODE
Boot Code Combined Code User Code
Memory Map Memory Map Memory Map
0x000 0x000 0x000
Boot Reset Code » Boot Reset Code User Reset Code
User Interrupt Code |« User Interrupt Code
Not Used User Main Code |« User Main Code
Not Used
User Reset Code Not Used
Boot Main Code » Boot Main Code
Ox1FFF Ox1FFF Ox1FFF

Configuration Bits

The configuration bits cannot be changed by the boot
code since they are not mapped into the program mem-
ory space. This means that the following configuration
options must be set at the time that the boot code is
programmed into the device and cannot be changed:

CPx Program Memory Code Protection Enable
DEBUG In-Circuit Debugger Mode Enable

WRT Program Memory Write Enable

CPD Data EEPROM Code Protection Enable
LVP Low Voltage In-Circuit Programming Enable
BODEN Brown-out Reset Enable

PWRTE Power-up Timer Enable

WDTE Watchdog Timer Enable

FOSCx Oscillator Selection

Most of these configuration options are hardware or
design-dependent, and being unable to change them
when the user code changes is of no consequence.

The various PIC16F87X devices have different code
protection implementations. Please consult the appro-
priate data sheet for details.

Some devices (such as the PIC16F877), can code pro-
tect part of the program memory and prevent internal

writes to this protected section of memory. This can be
used to protect the boot code from being overwritten,
but also prevents the user code from being code pro-
tected, however.

On some devices, code protecting all the program
memory still allows internal program memory write
cycles. This provides security against the user code
being read out of the chip, but does not allow the boot
code to be protected from being overwritten.

Data EEPROM Code Protection Enable would nor-
mally not need to be set, unless data is programmed
into the data EEPROM when the boot code is originally
programmed and this data needs to be protected from
being overwritten by the user code.

Program Memory Write Enable must be enabled for the
boot code to work, since it writes to program memory.
Low Voltage In-Circuit Serial Programming (ICSP™)
enable only needs to be set if the user wishes to pro-
gram the PICmicro MCU in-circuit, using logic level sig-
nals on the RB3, RB6 and RB7 pins. Since the purpose
of the boot code is to program user code into the PIC-
micro MCU, in most cases, it would be redundant to
have facilities for low voltage ICSP.

If the Watchdog Timer is enabled, then the boot code
must be written to support the Watchdog Timer and all
user code will have to support the Watchdog Timer.

DS00732A-page 2

Preliminary

© 2000 Microchip Technology Inc.

AN732

Determining Whether to Load New Code or to
Execute User Code

After a Reset, the boot code must determine whether to
download new user code. If no download is required,
the bootcode must start execution of existing user
code, if available.

There are many ways to indicate whether or not new
user code should be downloaded. For example, by test-
ing a jumper or switch on a port pin, polling the serial
port for a particular character sequence, or reading an
address on the I2C™ bus. The particular method cho-
sen depends on the way that user code is transferred
into the microcontroller. For example, if the new user
code is stored on an 1°C EEPROM that is placed in a
socket on the board, then an address in the EEPROM
could be read to determine whether a new EEPROM is
present.

If an error occurred while downloading new user code,
or the bootloader is being used for the first time, there
might not be valid user code programmed into the
microcontroller. The boot code should not allow faulty
user code to start executing, because unpredictable
results could occur.

Receiving New User Code to Load into
Program Memory

There are many ways that the microcontroller can
receive the new firmware to be written into program
memory. A few examples are from a PC over a serial
port, from a serial EEPROM over an I2C or SPI™ bus,
or from another microcontroller through the parallel
slave port.

The boot code must be able to control the reception of
data, since it cannot process any data sent to it while it
is writing to its own program memory. In the case of
data being received via RS-232, there must be some
form of flow control to avoid data loss.

The data received by the boot code will usually contain
more than just program memory data. It will normally
contain the address to which the data is to be written
and perhaps a checksum to detect errors. The boot
code must decode, verify and store the data, before
writing it into program memory. The available RAM
(GPR registers) of the device limits the amount of data
that can be received before writing it to program
memory.

Programming the FLASH Program Memory

The PIC16F87X devices have special function regis-
ters that are used to write data to program memory.
There is a specific sequence of writes to these registers
that must be followed to reduce the chances of an unin-
tended program memory write cycle occurring.
Because code cannot be executed from the FLASH
program memory while it is being written, program exe-
cution halts for the duration of the write cycle. Program
memory is written one word at a time.

Error Handling

There are several things that can go wrong during exe-
cution of the boot code or user code. The bootloader
should handle the following error conditions:

* No valid user code written into the chip.
e Error in incoming data.

* Received user code does not have any code at its
Reset vector.

* Received user code overlaps boot code.

¢ User code causes execution into the boot code
area.

If the bootloader is being used for the first time, or if the
user code is partially programmed because of a previ-
ous error, there might not be valid user code pro-
grammed into the microcontroller. The boot code
should not allow potentially faulty user code to start
executing.

The transfer of data can be interrupted, which will
cause the boot code to stop receiving data. There are
several ways to handle this depending on how the data
is being received. For example, the boot code may be
able to time-out and request the data to be sent again.
The simplest method is to wait, trying to receive more
data with no time-out, until the user intervenes and
resets the device. Since the boot code needs to leave
the most possible program memory space for the user
code and also be reliable, the smallest, simplest imple-
mentation is often the best.

Incoming data may be corrupted by noise or some
other temporary interruption, and this should be
detected, otherwise, incorrect data could be pro-
grammed. A checksum or other error detection method
can be used.

Incorrect use of flow control can result in data being
sent to the PICmicro MCU while it is not ready to
receive data. This can cause overrun errors that should
be handled by the boot code. Once an overrun has
occurred, the data is lost and this is essentially the
same as a data transfer interruption, discussed above.

In some cases, data could be sent to the microcontrol-
ler before the boot code is running, causing part of the
data to be lost. If this type of error is possible, then it
should be detected. This error may manifest itself as
user code that does not seem to have any code at the
Reset location and can be detected by checking the
addresses being programmed. An alternative is to gen-
erate a checksum on all the code that is written into pro-
gram memory and transmit this to the user for
verification, after programming has been completed.

© 2000 Microchip Technology Inc.

Preliminary

DS00732A-page 3

AN732

The code developer should take care that the user
code does not use the same program memory space
that the boot code uses. The exception is the user code
at the Reset location that can be relocated, as
explained earlier. If the user code does try to use pro-
gram memory that contains boot code, the boot code
should detect the conflicting address and not overwrite
itself. In some devices, part of the program memory
can be code protected to prevent internal writes to the
part of the memory that contains the main boot code.
Note that this does not apply to all PIC16F87X devices.

Faulty user code, or a brown-out condition that corrupts
the program counter, can cause execution to jump to
an unprogrammed memory location and possibly run
into the start of the boot code. If the user code at the
Reset location is being relocated, as explained earlier,
then execution can enter the boot code area if a pro-
gram branch does not occur in these four relocated
instructions. The boot code should trap the program
execution to avoid these errors from causing any unin-
tended operation.

When an error is detected, it is useful to indicate this in
some way. This can be as simple as turning on an LED,
or sending a byte out the serial port. If the system
includes a display and the display drivers are incorpo-
rated into the boot code, then more sophisticated error
messages can be used.

DS00732A-page 4 Preliminary

© 2000 Microchip Technology Inc.

AN732

FIGURE 2: FLOWCHART FOR BOOTLOADER
Is
Add address to
this Reset code YEi location for
Branch to boot at address 0 relocated boot area
code in upper to 3?
memory l
Indicate that Reset
code has
been received
Pin RBO low to Valid user Wait for R
request boot code? ait for Reset
Reset code
received?
Branch to
start of
Set up USART user code
l Address within
Write to indicate valid range?
that there is
no valid user code YES 4 m
Te
v Write to
Wait for colon in program memory
hex file l
i Increment
Receive number address and point
of bytes, address, to next byte
and record type
Y
YES
End of Regular Send progress g Are all bytes
file record? record? indicator ‘.’ done?
NO
Write to indicate
that there is Address <
valid user code 0x20007?
Send success
indicator ‘S’ Receive and Check
save data bytes |—» ec S:J,)m N a0 >
l and checksum correct:
Wait for Reset
Point to first Send failure
data word indicator ‘F’
Get data word)
to program — Wait for Reset

© 2000 Microchip Technology Inc. Prelimin ary DS00732A-page 5

AN732

SCHEMATIC SHOWING SERIAL PORT AND TEST PIN

FIGURE 3:

anNo

d1a
S10
axyt
S1d
axy
dsda

ad-Ms
TMS @) B
£1849T0Id ZHN- =
o HINY owo\lj
— ANANA—
e —7|2Q¥rdsd 1dSd/104 —5> T—ON aNor—;
-~ —5—{equ/edsd 0dSd/00Y —p£—
- — —£¢__pou/vasias 10S/M0S/E0Y 1no 929A
= ot €2 euoa A ul_8l_ 8 T
4680 2y ve |20a/0dS U
= c5—{90UNIOIXL OMOL/TOM —or— A aan
o 5 oo —|£08/LaN IMOL/00Y —er— -
o— S—— —/5—|rQ¥/rdSd LNOM10/20SO—r— _-
o E - gy —|9Q¥/SdSd ND1O/IOSO—{r
o 5 o) = —5—(9q¥/9dsd SSA—2r
o1 g—(Nizd & Lnozd — —o6]Lq¥idsd i
o ; s NITY LNOTY = e SO/LNV/ZId [—p7— _ | Noot
o3 699 HWINV/TIE —— -IT—
o 5 —{LnozL NIZL 57 o—{08Y/NI QY/SNV/0TH —o—
o 1NOTL NITL 19y PNV/SVY
L vi u e lzay IMD0LAE —E—
i =) —) € leay ENV/EVY —2— L
NOOT S [9e g aan
20— 1 Gan e e SININV/EYS ——
v‘ A —£8lgay INV/TVH —2—
NOOT 9 i D 8e 3
[90 10 g NOOT 6 9gd ONV/0vYd Z Xl
+A S 410 ——— /a4 ddA/4T0NW
H [l z Q T ov =1 73
(@]
)
aan Zn i o) n aan
= ey
® NoOT
o)

aan

© 2000 Microchip Technology Inc.

Preliminary

DS00732A-page 6

AN732

IMPLEMENTATION

How this Bootloader Works

The boot code in Appendix A implements a bootloader
in a PIC16F877 device. It uses the USART to receive
data with hardware handshaking, tests a pin to decide
if new user code should be received and includes many
of the features discussed in this application note.

Integrating User Code and Boot Code

The code at the Reset location (ResetVector) writes
to PCLATH. To set the page bits, it then jumps to the
rest of the boot code in upper memory. The main code
is in the upper 224 bytes of memory starting at address
0x1F20 (StartOfBoot). The first instructions at this
location trap accidental entry into the boot code. The
main bootloader routine starts at the address labeled
Main.

The boot code requires that the user code includes a
goto instruction in the first four locations after the
Reset vector and relocates these four instructions into
the boot code section (StartUserCode). This simpli-
fies the development of code for use with the boot-
loader, since the same user code will also run when
programmed directly into the chip, without the boot
code present. The boot code changes to bank 0 and
clears PCLATH before executing the relocated code,
so that the normal Reset conditions apply. If a program
branch does not occur in the four relocated instruc-
tions, then program execution is trapped in an endless
loop to avoid any unintended operation.

The boot code must be programmed into the
PIC16F877 using conventional programming tech-
nigues and the configuration bits are programmed at
the same time. The configuration bits are defined with
a __ CONFIG directive and cannot be accessed by the
boot code, because they are not mapped into the pro-
gram memory space. The boot code does not use a
Watchdog Timer.

Determining Whether to Load new Code or to
Execute User Code

The boot code tests port pin RBO to determine whether
new user code should be downloaded. If a download is
required, then the boot code branches to the Loader
routine that receives the data and writes it into program
memory.

If pin RBO does not indicate that new user code should
be loaded, then a program memory location (labeled
CodeStatus) is read with routine FlashRead to
determine whether there is valid user code in the
device. If there is valid user code, the boot code trans-
fers execution to the user code by branching to location
StartUserCode. Otherwise, execution is trapped in
an endless loop to avoid this error from causing any
unintended operation.

Receiving New User Code to Load into
Program Memory

The boot code receives the new firmware as a standard
Intel® hex file (znHx8M format), using the USART in
Asynchronous Receiver mode (hex format defined in
Appendix B). It is assumed that a PC will be used to
send this file via an RS-232 cable, connected to a COM
port. Hardware handshaking allows the boot code to
stop the PC from transmitting data while FLASH pro-
gram memory is being written. Since the PICmicro
device halts program execution while the FLASH write
occurs, it cannot read data from the USART during this
time.

Hardware handshaking (described in Appendix C) is
implemented using port pin RB1 as the RTS output and
RB2 as the CTS input. The USART is set to 8-bit Asyn-
chronous mode at 9600 baud in the SerialSetup
routine. The SerialReceive routine enables trans-
mission with the RTS output and waits until a data byte
has been received by the USART, before returning with
the data. The SerialTransmit routine checks the
CTS input until a transmission is allowed and then
sends a byte out the USART. This is used for transmit-
ting progress indication data back to the PC.

The boot code receives the hex file, one line at a time
and stops transmission after receiving each line, while
received data is programmed into program memory.

Decoding the Hex File

The boot code remains in a loop, waiting until a colon
is received. This is the first character of a line of the hex
file. The following four pairs of characters are received
and converted into bytes, by calling the GetHexByte
routine. The number of bytes (divided by two to get the
number of words) and the address (divided by two to
get a word address) are saved, and the record type is
checked for a data record, or end of file record.

If the record type shows that the line contains program
memory data, then this data is received, two pairs of
characters at a time (using the GetHexByte routine),
and is stored in an array. The checksum at the end of
the line is received and checked, to verify that there
were not any errors in the line.

Once the hex file line has been received, hardware
handshaking is used to stop further transmission, while
the data is written into the program memory. The <CR>
and <LF> characters that are sent at the end of the line
are ignored. This gives the handshaking time to take
effect by ignoring the byte being transmitted, when the
handshaking signal is asserted. Once the data from the
line has been programmed, the following lines are
received and programmed in the same way, until the
line indicating the end of the file has been received. A
success indication ‘S’ is then transmitted out the
USART (by the FileEnd routine) and the boot code
waits for a Reset.

© 2000 Microchip Technology Inc.

Preliminary

DS00732A-page 7

AN732

Programming the FLASH Program Memory

Data is written to the FLASH program memory using
special function registers. The address is written to the
EEADR and EEADRH registers and the first two bytes
of data are written to EEDATA and EEDATH. The
FlashWrite routine is then executed, which writes
the data into program memory. The address is then
incremented and the next two data bytes are written.
This is repeated until all the data from the line of the hex
file has been programmed into the FLASH program
memory.

Error Handling

There are several things that can go wrong during exe-
cution of the boot code or user code, and a number of
these error conditions are handled by the boot code. If
an error occurs, the boot code traps it by executing an
infinite loop, until the user intervenes and resets the
device. If an error is detected in the incoming data, then
a failure indication ‘F’ is transmitted. This does not
occur in the case of an overflow error, or if the data
transmission is halted.

If the bootloader is being used for the first time, or if the
user code is partially programmed because of a previ-
ous error, there might not be valid user code pro-
grammed into the microcontroller. The boot code
handles this by writing a status word (0x3fff) at a
location labeled CodeStatus, before programming
the FLASH device, and then writing a different status
word (0x0000) to this same location, when program-
ming of the user code has been completed. The boot
code tests this location and only starts execution of the
user code, if it sees that the user code was successfully
programmed. When the boot code is originally pro-
grammed into the PICmicro MCU, the status word indi-
cates that there is not valid user code in the device.

The transfer of data can be interrupted. In this case, the
boot code waits, trying to receive more data with no
time-out, until the user intervenes and resets the
device. Noise, or a temporary interruption, may corrupt
incoming data. The Intel hex file includes a checksum
on each line and the boot code checks the validity of
each line by verifying the checksum.

Incorrect use of flow control can result in data being
sent to the PIC16F877, while it is not ready to receive
data. This can cause an overrun error in the USART.
Once an overrun has occurred, the USART will not
move any new data into the receive FIFO and the boot
code will be stuck in a loop waiting for more data. This
effectively traps the error until the user intervenes by
resetting the device.

If the user starts transmitting a hex file before the boot
code is running, the boot code may miss the first lines
of the file. Since all the lines of a hex file have the same
format, it is not normally possible to determine whether
the line being received is the first line of the hex file.
However, since MPASM generates hex files with
addresses in ascending order, the first valid line of the

hex file should contain the code for the Reset vector
which is checked by the boot code.

The user code may try to use program memory loca-
tions that contain boot code. This is detected by check-
ing the address being programmed and detecting
conflicting addresses. The boot code will not overwrite
itself and is not code protected.

Faulty user code, or noise that corrupts the program
counter, can cause execution to jump to an unpro-
grammed memory location and possibly run into the
start of the boot code. The first instructions in the boot
code are an infinite loop that traps execution into the
boot code area.

Because the first four instructions in program memory
are relocated in the boot code implementation, there
must be a program branch within these four instruc-
tions. If there is no program branch, then execution is
trapped by the boot code.

Using the Bootloader
The procedure for using the bootloader is as follows:

* On the PC, set up the serial port baud rate and
flow control (hardware handshaking).

» Connect the serial port of the PIC16F87X device
to the serial port of the PC.

* Press the switch to pull pin RBO low.

« Power up the board to start the boot code
running.

¢ The switch on RBO can be released if desired.

* From the PC, send the hex file to the serial port.

* A period ‘" will be received from the serial port for
each line of the hex file that is sent.

« An ‘S’ or ‘F’ will be received to indicate success or
failure.

e The user must handle a failure by resetting the
board and starting over.

* Release the switch to set pin RBO high.

e Power-down the board and power it up to start the
user code running.

On the PC, there are several ways to set up the serial
port and to transfer data. This also differs between
operating systems.

A terminal program allows the user to set up and send
data to a serial port. In most terminal programs, an
ASCII or text file can be sent and this option should be
used to send the hex file. A terminal program will also
show data received on the serial port and this allows
the user to see the progress ‘.’ indicators and the suc-
cess ‘S’ or failure ‘F’ indicators. There are many termi-
nal programs available, some of which are available
free on the Internet. This boot code was tested using
Tera Term Pro, Version 2.3. The user should be aware
that some popular terminal programs contain bugs.

DS00732A-page 8

Preliminary

© 2000 Microchip Technology Inc.

AN732

A serial port can be set up in a DOS window, using the
MODE command and a file can be copied to a serial
port, using the COPY command. When using Win-
dows® 95/98, the MODE command does not allow the
handshaking signals to be configured. This makes it
difficult to use the COM port in DOS. When using Win-
dows NT® or Windows 20002, the following commands
can be used to send a hex file named £ilename.hex
to serial port COM1.:

MODE COM1l: BAUD=9600 PARITY=N DATA=8
STOP=1 to=off xon=0ff odsr=off
octs=on dtr=off rts=on idsr=off

COPY filename.hex COM1:
Resources Used

The boot code coexists with the user code on the
PIC16F877 and many of the resources used by the
boot code can also be used by the user code. The boot
code uses the resources listed in Table 1.

TABLE 1: RESOURCES USED BY THE

BOOT CODE
Resource Amount
Program memory 224 words
Data memory 72 bytes
1/O pins 5 pins
Peripherals USART

The program memory used by the boot code cannot be
used for user code, although it is possible to call some
of the subroutines implemented in the boot code to
save space. The user code can use all the data
memory.

The USART can be used by the user code with the two
I/O pins for the USART and the 1/O pins used for hand-
shaking. The I/O pin used to indicate that the boot code
should load new user code, is connected to a switch or
jumper. This can be isolated with a resistor and used as
an output, so that it is possible to use all the 1/O pins
used by the bootloader.

In summary, all resources used by the boot code,
except program memory, can also be used by the user
code.

CONCLUSION

Using a bootloader is an efficient way to allow firmware
upgrades in the field. Less than 3% of the total program
memory is used by the boot code and the entire pro-
gram memory available on a PIC16F877 can be pro-
grammed in less than one minute at 19,200 baud.

The cost of fixing code bugs can be reduced with a
bootloader. Products can be upgraded with new fea-
tures in the field, adding value and flexibility to the prod-
ucts. The ability to upgrade in the field is an added
feature and can enhance the value of a product.

© 2000 Microchip Technology Inc.

Preliminary

DS00732A-page 9

AN732

"YHAHOSILYHM NOSYHY ANV ¥OA ‘SHOVWYA TYILNANOASNOD ¢ 02000

¥O TYINIQIDNI ‘TIVIDAdS ¥Ood dTdVIT dd ‘SHONVISWADYID ANV NI ¢ 6T000

'ION TTIVHS ANYAWOD HHI ~HIYMLAOS SIHL OL ATddY¥ HSOJddNd IVTIADILEYA ¢ 8T000
¥ ¥0A4 SSHNLIA ANY ALITIGVINVHOYAW A0 SHIINVINYYM QAITANI ‘OL ¢ LT000
QILINIT ION IN9 ‘ONICATONI ‘AYOIAILVIS ¥O QHITAWI ‘SSHIAXH YIHIIHM ‘ 9T000
'SHILNYIYYM ON “NOILIANOD uSI S¥uw NV NI QAAIAOYd SI HIYMIAOS SIHL ¢ ST000

"9SUSDTIT ‘Y £€T000

STUY3 JO SUOTITPUOD pue sSwIal aY3 JO yYodeaiaq oYyl I0F AJTTTIQeT] TIATO ! ZT000
03 se TIom se ‘smeT o1qeotTdde Ispun SUOTIOUES TRUTWIID O3 Idsn ! TI000
oyl 2309lgns Aew SUOTI3IDIIISSI BUTOHBDIOF 9Y3 JO UOIJFRTOTA UT 9sn Auy ! 0T000
‘poaxssax oxe s3ybra TIY “~smeTl 3ybtahkdoo srgeotTdde xspun ps3os3jzoad ! 60000
sT pue ‘xeorTddns s3T xo/pue Auedwo) =yl Aq psumo ST =aI1em3lJos ! 80000

oL ‘s3onpoid ISTTOIJUODOIDTW OIADTWOIJ ATIYDOIDTW UO ATSATSNTOXD ! L0000
pue ATaT0s @sn 103 ‘aswo3lsnd s, Auedwo) syl ‘nok o3z partddns ! 90000

pue pspuslUT ST ISTTOIJUODOIDTW @OIDTWDId $3T X0I (,Auedwod, =Yyl) ! S0000
pe3exodioour ABoTouyosl dIUDOIDTW Ag yjztmaaay poatTddns aaxemios aUl ! %0000

* €0000

JuswWeaiIby SSUSDTT 2IeM3JOS ¢ 20000
—==! 10000

LXHL d0¥N0S HNIT

T HdDvd ¥¥:89:%T 000C-9C-9 IWSY " LL8LO0Od

NSV'2./.81004d 37114 —3AO0D I04dNOS 'V XIAN3IddV

"YIAIOSLVYHM NOSYIH ANV HO4 ‘SIDOVAVA TVILNINOISNOD HO TVLNIAIONI “IVIOIdS

H0O4 31gVI1 39 ‘SADNVLSNNDHID ANV NI ‘LON TIVHS ANVANOD TFHL 'FYVMIHOS SIHL OL AlddV ISOddNd ¥Vl
-N2ILYVd V 404 SSANLIH ANV ALITIGVLINVHOEIN 40 STILNVHEVYM a3ITdNI ‘OL d3LINIT LON 1Ng ‘ONIANTONI ‘AHOL
-NLVLS dO a3ITdINI ‘SSTHdXT YIHLIHM ‘STILNVHHEVYM ON "'NOILIANOD .Sl SV, NV NI d3AIAOYd S| I4VYMIHOS SIHL
'asua| SIY} JO SUONIPUOD pue SWIa) 8y} JO Yyoeald ayi Jo} Ajigel|

JIAID 0} Se ||am Se ‘sme| a|qedljdde Japun suonoues [eulwd 03 Jasn ay) 19algns Aew suonauisal Buiohaio) sy Jo UoR|OIA Ul 3sh Auy
‘paniasal are sybu || ‘sme| 1yb1IAdoa ajgealjdde sapun pajoalold si pue ‘aljddns syl Jo/pue Auedwo) ayl Aq paumo Si a1emyos ay

's1on
-poud 13[]011U02043IN 0121WD|d dIyd042I\ UO A|BAISN|IX8 pue A|9|0s asn 1o} ‘1awoisnd s,Auedwo) ayl ‘noA o1 paljddns pue papuaiul
S| J3[|0JIUOJ0IDIN @0IIWD|d SH Jo} (Auedwo), ay) paresodiosu) ABojouyosal diysosoiN Ag yumaisay paiddns aremyos ayl

JUBWa3.IBY aSUSIIT 9IeMml0S

HAOD LDHALd0 D01

posesTsd 0¥%°20 WSVANW

© 2000 Microchip Technology Inc.

Preliminary

DS00732A-page 10

AN732

pauwerboxd 10 psaes Buraq SpPIOM JUNOD 03! T : I93UNnon
ejep BUTWODUT JO WNSYDaYD PTOY 03 93Aq! T Tuns3{oayD
STTIJ X9y JO SUTIT UT SpPIOoMm JO Iaqunu’ T ¢ SpIOMWNN
93Aq MOT ssaappe Axowsw wexboxd yseri! T 1 ISS2IPPY
93Aq ybty ssaippe Aiowsw wexboxd ysel3! T :HSS2IPPY
0ZX0 D0Tdd

o3jueq UT SO9TJeTIeA’

ZHNT ST D2SO4g°

pneq 00Z6T IOJ Iojexsusb pneq IOJ Juelsuo) ! 20x%0 nNd0E INVISNOD dnvd!’

pneq 0096 103 I0jeisusb pneq JI0F JuelsUOD! 6TX0 noF INVISNOD anvd

Tox3juod moT3 x03 andur gz urd g 3IO4! z noa INdNI SID

Tox3juod moT3 x03 3Indino T urd g 3I0d! T noa INd1N0 SId

peoTumop se3edTpul Indur (UTd g 3I04‘ 0 nod INdNI ISHL

SJuelsSUO) ¢

440 dAT B 440 ddd
® 440 o0gId ® DSO IX 3 NO ATYNH IdM » 440 IAM 3 NO HI¥Md 3 440 dD » 440 NHAOod OHIANOD

ISIT
‘our ‘AboTouyssl dTYLOADTKH 00°T UOTSISA ‘STTdA ISPeSH pIAepuelsS DNI LL8AITd !
ISIT
<DUT"LL839Td> SpnIouTH
Z0€- TSASTIOIIS
0=u ‘440=X '4d0=38 ‘L.839T=d 3sTT

‘BUTUUNI 9POD I9sSN S3Ie3s USY] pue 39s91 JI0JF siteMm -Arowsw werboxd !
03 S93TIM PUE BIBP UO BUTDIUD JI0IID S20Q ‘bulxeyspuey sIiempiey !
pue L¥¥SN BUuTsn STTJ XoY SOATOO9Y " POPROTUMOP oC PINOUS 2pod IT !

o9s 03 utd e s3s9] -Axowsw wexboxd o3 3T 93Tam pue 3xod Terass !
® WOIJ SPOD I9SN HBUTUTRIUOD STTJ XS © SATSD3I 03 9pOod 300g !

0% ZA WSYdAW BuTrsn palquassy !

000Z =unp 9¢ 93eq !

00°T IUOTSTASY !

‘oul Abotrouyosl dAIUYDSOIDTIW : Auedwo) !
1angaen ST raoyany !

wse" £/8300q I oWeUSTTd !

S9000
%9000
£€9000
29000
19000
09000
65000
85000
L5000
95000
G5000
%5000
£€9000
25000
TS000
05000
67000
87000
L%000
9%000
S7%000

¥¥000
£€%000
0L€00
20000
T0000
Z¥000
%000
07000
6€000
8€000
L€000
9¢€000
S€000
¥€000
€€000
2€000
€000
0€000
62000
82000
L2000
92000
S2000
%2000
€2000

¥2000000
€2000000
22000000
12000000
02000000

6T000000

20000000
T0000000
00000000

Tede L00¢C

DS00732A-page 11

Preliminary

© 2000 Microchip Technology Inc.

AN732

1/0.84910Id 103 0°bed jo 3xed 3serl ssn! 02L0%0 IO !
¥/€L849T0Id I03 T=bed jo 3xed 3sel =sn! 0Z30X0 A0 !
L/9.8491DId 103 ¢obed Jo 3xed 3serl esn! 0Z3TX0 DI0

eaIe 9POD 3000 03UT AIJus Tejusprooe sdexl Axowsw xaddn UT Spod 3000 JO 3Ie]S!

I9peoT 300q 03 Ob! UTeRn oj0b
‘398 aJe s3Tq 9bed sansus -- Axepunoq

¢obed 103 s3Tq °bed 3es! HIVTIOd Fmaou
uten ybIty MmTAOW 1 I0309A3989Y

0000%0 [3)<(6¢]

opoo I03D9A 3os9y!

€ queq WYY e3lep

z sueq WYY e3ep

T ueq WY e3ep

0 Yueq WYY ®e3ep

ssbueys 31q

3ooTos

jooTes

jooTes

3ooTos

SNIV.IS

AN
Td¥ ‘' SAIVLS Isq
0d¥ ' SNIVY.LS Isq

03 oxpew! OJDVIN cueg
WANHA
Td¥ ‘' SNIVLS Isq
0d¥ ‘' SNIVLS peley

O3 OoJxderu ! OYDYIN cyueg
INANHA
Td¥ ' SNIVY.LS 3oq
0d¥ ' SNIVLS Isq

03 oxdew! OYDOVIN Tyued
INANEA
Td¥ ‘' SNIVLS peley
0d¥ ' SNIVY.LS 3oq

03 oxdew! OYOVIN oxued

suo ATuo usym pssTtwrido o9 ued ssbueys yueq Auep’
jueq I93sTbeI 9yl 1309T9S 03 SOIDEeN!

OaNHE

ejep buTtwoouTl buriols I03F I93Ing’ 0%%0 : Rexaygeseq
I93Ing uTl ejep o3 xsjutod! T :I93utodeledq

sIojoeIeyd TIDSE DBUTWODUT g WOIJ 93Aq! T : 93AgxoH

POATODSI 9POD I03DDA 399X MOUS 03 93AQ! T :o34g3saL

TTTO0O
OTTOO
60T00
80TO0O0
LOTOO
90TO00
S0TO0O
70TO0O
€0T00
obed butrssoad
Z0TO00
TOTOO
00TO0O
66000
86000
L6000
96000
56000
76000
£6000
26000
T6000
06000
68000
88000
L8000
98000
S8000
78000
€8000
28000
78000
08000
6L000
8L000
LL00O
9L000
SL000
7,000
€L000
ZL000
TL0OOO
0L000
69000
89000
L9000
99000

024AT

ocdce ¢000

s [90¢] ebessan

¥800 T000
4AT0¢€ 0000

0000

82000000
L2000000
92000000
G2000000

© 2000 Microchip Technology Inc.

Preliminary

DS00732A-page 12

AN732

wexboxd ou 93eDTPUT O3 BIEP PEOT! FIX0 mTAOU
HIVAHd Fmaou
wexboxd ou 93edDIPUT 03 eIEP pPEOT! JEX0 mTAOW
pIOM SN3LISOPOD JO SS2IPPE PeOT! IPpPYsSnielispeoT TTeD
194A 9pod I0309A 139591 OU 923eDTIPUT! o3Ag3soL JIT0 : I9peOTT
spoo mau wexboad pue peOT 03 SUIINOI JO 3Ie3S!
S |
9poo I9SnN UNI uayl oI9z IJT! apopIasnNlILIS o306
9poo pITeA OU ST ULaYl OI9z 30U JT! zazoxagdeis, o306 tzazoxagdeas
beT3y 7z 23so3! Z'SNIVLS Ss33q
0o3ueq 03 gIuedq woi abueys! oueqg
ox9z ST e3ep IT bely 7 3eos! 4 'YIvaad Jaou
Zyueq o1 ¢ijueq woiJ obueys! zyueg
UOTILOOT SNILISOPOD I8 elep peax! pesyyseTd TTeD
pIOM SN3LISOPOD JO SS9IPPE PeOT! IPpYsSNnielspeor TTeD
peoT300q Op usyl MOT IT! I9opeorT o306
peol 300q xo3 utd 30eyUo! INdNI ISHAL'dI¥0d ss33q
19sa1 3JOS JO 9sed UT (Q3ueq o3 =abueyn! ouedg TuTen
S3STXS 9pOD I9sSn PITes JT puB INDOO PINOYS pPeol e JT 99S 03 S3S9L!
SUTJINOI SPOD 300q UTep!
S |
9pOd ou I10J JIIEX(0 ‘9POD PTIeA 10T 0 FFFEXO0 wa :sSn3e359pop
pauwerboxd useaq Sey Spod PITeA I2YUIdYM MOYS O3 UOTIeDO0T AIowsw wexboid!
R |
19s91 I0J 3Tem pue Joxis dexl! TIxoxxgdex] oj0b :TIxoxaxgden,
obed 3osxxoo 39s! HIVIDd Fmaou
9poo 39sax x9sn ul o306 ou JT dexl! Taoxxgdeal ybty MmTAOW
dou sTy3l seoeldsl SpPOD I9sSN poajedolax! dou
dou sty3l seooneldsal 9pOD I9SN PI3IEDOTDI! dou
dou sty3l seooneldsal 92pPOD I9SN PI3IeDOTdI! dou
dou sty3l seoeldsl SpPoOD I9sSN pojedolax! dou
UOTITPUOD 39sax I0J o6ed 3o91100 398! HIVIDd JITO :9poDISSNITLIS

SUT3INOI STIY3 03 burtdwnl sx03ysq o3ueq UT 99 ISNN!

9pod I9sn JOo 3xe3s 03 dunl 03 Spod 39891 I9SN pPal3edOoTaY!
R |
39891 I0J 3Tem pue Joxis dexl! Jzoxxgders, o306 :xoxxgdeat,

obed 3osxxoo 39s! HIVIDd Fmaou

9pod 3o00q 03UT suni uorjinosxa IT dexy! goxamdexrl ybTY MmTAOW :j00g303I€3S

85GTO00
LSTOO
99T00
GSTO00
¥STOO
€9T00
ZSTO0O0
TSTO0O
0STO00
67100
8¥TO00
LYTO00
9%T00
SYT00
¥¥T00
€¥T00
Z¥T00
T¥T00
0%T00
6¢€£T00
8E€TO00
LETO0
9€T00
SET00
¥E€TO00
€E€T00
ZETO00
TE€T00
0€TO00
6CT00
8CTO00
LZTO0O0
9CTO00
SCTO00
¥ZT00
€CT00
ZZTO00
TZT00
0CTO00
6TTO00
8TTOO
LTTOO
9TTO0O0
STTO00
¥TITOO
€TTO00
CTTO0O

440¢€
d800
J€0¢€
sdLc

SYTO

€cdc
8€4C
€0dT

0880

94LC
sdLc
Yedc
900T

d44¢€

Ycazc
Y800
AT0€
0000
0000
0000
0000
¥8TO0

zzac
Y800
4AT0¢€

Je€4T
acdt
0edT
ge4dT

YedT

6€4T
8¢€dAT
LEAT

vedT

€T
0€dT
A424T
d424T

g24T

YZ4aT
6C4T
8CAT
LTAT
924T
STAT
vcat
€CaT

zzAT
24T
0zZ4T

DS00732A-page 13

Preliminary

© 2000 Microchip Technology Inc.

AN732

,’, pues pue SUIT 2I0UBT usay3l oOs IT! suogauI] o306
S3Tq BTFuod pue suUOT3IeDOT QI ST YD Tym’ D'SALYLS ©sS33q
000ZX0 > ssaIppe IT oayd! M'HSS92IpPPY IMppe
09X0 mTAOW
,’, pues pue SUIT 2I0UBT uay3l 3ou JT' QuogauI] o306
(00%0) pIODSI SUTT IeInbax JT daYD! Z 'SNIVLS ss131q
00X0 MTIOX
M ‘223AgxeH Jaow
suop TIe uayl STIF JO pus IT! suogaTTd o306
(TOX0) PIODSX STTJF JO Pus JT O9yd! Z 'SNIVLS 057139
T0X0 MTIOX
o2dA3 paoosax 396! 93AgXoH12D 11D
4 'ISS9IPPY Jxx
ssaIppe pIom 1396 03 g Agq SsaIppe SpPIAIP! A 'HSS9IppPY JIx
D 'SNIVLS 3°q
TSSSIPpPY Jmaou
ssaippe 3xels weaboaxd Jo JTey IomoT 196! 934AgxaH39H TTEeD
HSS2IPPY Jmaou
ssoappe 3xels weaboad Jo JTey aaddn 396! 934AgxaH39H TTEeD
spiom Jo Iaqunu 396 03 gz Aq SPTATIP! A/ spIoMuny Jax
D 'SNIVLS 3°q
spIomwnN Jmaou
STTJ UTI JIOII® JO 9Sed UT JIdqunu JTWIT! ATX0 mIpue
SUTT UT So34Aq ejiep wexboad Jo gaqunu 386! 934AgxaH39H TTEeD
019z WNS3OaYd Y3ITMm 3Iels’ uns3{oayD JITo
934AQq 3x9@u I0J 3Tem ULyl 3ou JT! SUTTMINISDH o306
Z'SNIVLS ss711q
poaATSDSx ,:, JT ooud! iy MTIOX

3x0od Tetaos woxj 923Aq mau 396! SATODIYTRTIISS TTEeD I QUTTMINIDD

s934AQ JO JI9qunu pue SsSaIppe 3oeIIXS pue ,:, I93Je S93A0 g ISATI 399!

,i, Y3aTm BuTixels oTTJ X9y JO SUTT MU 399!

3xod Tetass dn 39s!

PIOM SN3BISSPOD MBU SFTaAM!

dnjsgteTass

s3TaMuseTd
YILVddd

TT®eO

TT®eS
Jmaou

50200
70200
€0¢00
20200
10200
00200
66T00
86T00
L6TO0
96T00
S6TO00
¥6T00
€6T00
Z6TO00
T6TO00
06TO00
68T00
88T00
L8TOO0
98T00
S8TO0O0
¥8T00
€8T00
Z8T00
T8TO0O0
08TO00
6LTO00
8LTOO
LLTOO
9LTOO
SLTOO
VLTOO
€LTO00
CLTOO
TLTOO
0LTOO
69T00
89T00
L9TOO
99T00
S9TO00
79100
€9T00
Z9T00
T9TO0O0
09TO00
69T00

8YdcC
€08T
0ZLO
0H0€E

8YdcC
€0dT
00¥¢E
9280

av4dc
€06T
T0Y¢E
odLe

YO0
0vD0
€00T

Y00
odLe

0v00
odLe

Z¥D0
€00T
ZY00
AT6¢€
odLe

€YT0

Zvdc

€£0dT

Yeve
gaLc

oDLT

YaLT
0800

H5AT
asdat
0G4dT
g54T

YaAT
694T
8GAT
LSAT

9G4T
SGdAT
ySdaT
€9dT

284t
TGAT
08G4T

AvAT
dy4T

avat
OvdaT

dy4T
Y4t
674T
87T
LYAT

9vAT

SPAT

YratT

€PaT
vAT

94T

0vAT
g€dT

© 2000 Microchip Technology Inc.

Preliminary

DS00732A-page 14

AN732

POATOD9I SpPOD JI03D2A 3I9SSI 3eY} MOUS !

POATSDSI 9pOD 392X FT MOoyd ob jou IT!
p > sSsoJppe suesu AIixeo ou!
ssaappe 03 (¥-) 23IX0 ppe!

PSATSD9I 9poOD 139s91 JT ¥OaUD o0b jou IT!
OI9z ST HSSSJIPpPY JT 3s93!
9pOD UOT3LDOT 300q IO0J bBurosysn!

0‘®@34g3assL

TSS3IPPY2aYD
D 'SNIVLS
M'TISS2IpPPY
23I%0

TSSSIPPYAOSYD
Z 'SNIVILS
M‘HSS9IPPY

©eaJIe 9POD 3953aX

Isq

o306
0s33q
Jmppe
mTAOW

oj0b
Ss339
JAouw

: §852IPPYORYD

uT ST SseIppe FT PoUD!

s934Aq JO JIaqunu JTeY O3 ID3UNOD 39S

Aexxe Jo 3xe3s o3 jurtod!

I923Unod

M spIomunn
ds4d
Aexayejeq

Fmaoul

Jaow
Fmaoul
mTAOW

yser3 ojur weiboxd 03 SwWI3 B 3B PIOM SUO

ejep psaes 399!

paaTenea buteq ejep dols 03 Jjo SI¥ 395! INAINO SIA'4LI0d

309II0D WNSIDOaYD IJT {OOUd‘
wnsyoays 396!

93Aq moT 3xau o3 jutod!
Aexxe uT o4eS!
23Aq e3ep ybrty 21sbH!

934Aq ybty o3 jutod!
Aexie uUT saeS!
93Aq ejep moT 396!

SpIOM JO I9qWnU O3 JIS93UNOD 219!

Aexxe Jo 3xe3s o3 xojutod 39s!

obessonIOoIIR
Z 'SNIVYIS

M 'unsoay
234AgXoH219D

ejegie=n
A'x93Uuno)d

43954
AANI
234AgxsH39D

4954
AQNTI
234AgXoH239D

I93Uno
M’ spIoMunN

ds4d
Aexayeqeq

Isq

o306
ss33q
Jaouw
TT®e>

0306
zZS30op

gout
Fmaow
TTe2

Jourt
Jmaouw
TTe2

Fmaoul

Jaou
Fmaou
mTAOW

‘ejegasdo

STTJF XoU JO SUIT WOIF WNSIDIYD pue so3Aq eiep 399!

25200
15200
05200
6%200
8%200
L%200
9%200
S%200
¥¥200
€¥200
(4440
%200
0%200
6€£200
8€200
L€200
9€200
S€200
¥€200
€€200
zecoo
€200
0€200
62200
82200
L2200
9zco0
S2200
444
€2200
zzeoo
12200
02200
61200
8TcC00
LTZTO00
9TZ00
S1200
¥TZ00
€TZC00
ZTcoo0
TTZ200
0TZ00
60200
80200
L0200
90200

SCYT

¥84¢C
€08T
TZLO
040¢

¥84¢C
€0dT
0280

7700
2Z80
7800
820¢€

98%T

cddac
£0dT
€280
odLe

€947¢
¥vd0

78Y0
0800
odLe

78Y0
0800
odLeT

Y700
2Z80
7800
820¢

gL4T

YLAT
6LAT
8LAT
LLAT

9L4AT
SLAT
VLAT

€LAT
ZLAT
TLAT
0L4T

494T

Ho4T
asdt
094T
g94T

Yo4dT
694T

894T
L94T
994T

S94T
7o4T
€941

294T
T94T
094T
494T

DS00732A-page 15

Preliminary

© 2000 Microchip Technology Inc.

AN732

Azowsw wexrboxd o3 ejep 93TIMm! 93TaIMYyseTd
©3Aq e3ep MOl 3Ixau o3 jurtod! A'¥9s4
23Aq ybTty peoT’ HIVAdHE
Aexxe woxjy =93Aq ybrty 196! M’'AdNI
234q ejep ybTty o3 jutod! 4'49s4
23Aq MOT peoT! YIVAHEH
Aexxe woxjy 93Aq moT 239bH! M‘AANI
ssoJIppe MOT peoT! JaAvEE

Zziueq o3 o3jueq woxj abueys!
ssoippe MOT 196! M'rISsSIpPpPY

o3jueq O3 gzIueq woxj oabueyd !
ssaippe Uybty peoTr! HIAvHad

Zijueq o3 Q3jueq woij =bueyd!
ssaippe UYbTy 396! M‘HSS2IpPPY

TTeR

Fout
Jmaou
Jaou
Fout
Jmaou
Jaou

Jmaow
Zsued

Jaow
o3ueg
Fmaou
z3ueq

Jaow

re3egpeoT

1 SS2IPPYPeROT

yser3y O3UT elep 93TJIM pUER BIRp pUER SS2JIppe peoT!

ssaJIppe UT JOJIIS OS ou! obesssNIOIIH

SsoJIppe 9pod 300q ueyl SsSST FT 3Iso3! D ’'SNIVYILS
M'TISS2IPPY

ssaippe JO 923Aq MOT 396! 3009303I€3S MOT

ssaippe Jo 923Aq YbIY UT I0IIS OS ou! obessapNIOIId
ssaIppe 9poo j0o0q o3 Tenbs FT 3s93! Z 'SNILVLS

93TIM U3ITM SNUTIJUOD OS s3K! SS9IPPYPeoT
SseIppe 9pod 300q ueyl sSsoT JFT 3IS93! D’'SNIVIS

M'HSS9IPPY
ssaippe Jo 923Aq ybIiy 396! 300g303aelis UbTy

Ioxx® usyl jou IT! abesssnIOIIR

3SITF POATSDDI 9pPOD JI0IDDA 39SDI JFT 3OOYD! 0‘234kgassg

o306
0s33q
Imgns
mTAOW

oj0b
ss33q
o306
s8339
Imgns
mTAOW

o306
ss33q

: TSSSIPPYPSUD

ISpPeOT 3000 UY3ITM SIDTTFUOD pue UYBIY 003 ST SS2Ippe JT 3dOayD!
POATOD9I US9(Q SeyY 9pod 39SSI IT IDIYD!

yserF ojutr wexboxd pue 23Aq elep 395 obH! eleqpeoT
ssaippe Uybty peoTr! HIAvHad

ssaippe UYBTY UOI3edoT mau 396! (T + @poDissnliiels) uybriy
sSsoJIppe MOT MU pPeoT! JavaH

Z3jueq 03 (Qyueq woxj sbueyos!
UOT3ED0T MU O3 SS2Ippe MOT ppe! (T + 9poDIasnilaIels) MOT
UOT3EDO0T MU O3 ¢-(SOSSoIPPe 93eDOTax! M‘TISS2IpPPY

o306
Imaou
mTAOW
Jmaow
zyued
mTppe

Jaow

66200
86200
L6200
96200
96200
¥6200
€6200
26200
16200
06200
68200
88200
L8200
98200
S8200
78200
€8200
28200
18200
08200
6L200
8L200
LLZTOO0
9L200
SL2T00
¥.200
€L200
2LT00
TLZOO
04200
69200
89200
L9200
99200
S9200
%9200
€9¢200
29200
19200
09200
65200
85200
L5200
99200
§5200
739200
€9200

YHLC

¥8Y0
H800
0080
¥8Y0
0800
0080

asoo

1280

4800

0280

cd4dc
€08T
1220
020¢€

cddc
£0dT
064C
€00T
0220
ATO€

Zd4c
S2OT

ve64dc
4800
ATO€
asoo

ycHace
1280

0OvAT

A64T
H64T
asdt
064T
dg64T
V64T

664T

964T

€64T

064T

A84T
84T
asat
084T

d84T
V84T
684T
884T
L8AT
984T

S84T
¥84T

€84T
284dT
T84T
084T

aLat
OLAT

© 2000 Microchip Technology Inc.

Preliminary

DS00732A-page 16

AN732

2340 X9U 2UO O03UT 3JISAUOCD Pue SITHTIP TTOSE OM]} SATSD9Y!

uIniax
JdavHad Fmaou
UOT3EDOT SN3e3SOpo) JO JIPpe MO PeoT! SN3elseopo) MOT MmTAOW
HIaAvad Fmaou
UOT3EDO0T SN3e3sopo) JO JIppe UYbTIY peol! snjeisspo) UbBTY mTaow
Zjueq 03 oyueq woxj sbueyd’ Zijueg :IppysSnie3ispeor]

Z3jUeq UT SUJIN3ISI SUTINOI STYL!
sao3stbox ssoippe Arowsw YseTF OJUT PIOM SN3ILISOPO) JO SSaIppe peoT!

39891 I0J 3Tem pue Joxis dexl’! cxoxagdeat, o306 s gxoxagdens
3Deq JI03EeDTPUT SINTIeI JITWSURIIF! JTWSURILTERIISS TTe2
0S PaIINDDO JI0IIAD! A, mTAOW :obessspnIOIIH

Toxxs dexl pue JI03eDTPUT SINTTILI PUSS OS STTJF X9Y UT JI0xIx!

319891 JI0J 3Tem OS Luop Tle’ suogaTTadeal o306 :ouogaTTaderr
S3TaIMysetld TT®D
s3sTxo wexboxd o23ed0TpPUT O3 eleP PROT! YIVAdHE JITo
s3sTx® wexboxd o3eO0TPUT O3 elepP PEOT! HIVAEH JITo
pIOM SN3LISOPOD JO SS2IPPE PeOT! IPPYSnielspeoT TTeD
3oeq I03EDTIPUT SS900NS JTWsSuUeIl! JTWSURILTRTISS TTeD

os 939Tdwoo bButwwexboxd! .S, MmTAOW HEYotoleCh |

319891 TT3Un uoT3NOaxs dexl pue JI03eDIPUT SS900NS puas o0s STTF butwwexaboxd suoq!

STTJ X9y SUTT 3IxXau 396 ob! SUTTIMONIDD o306
yDeq I03eDTPUT ssaiboid jTwsueIl! JTWSURILTETISS TTE2
os pauweiboad ussq sey SUIT! P mTAOW :2UOgaUTT

STT3F Jo surll buTtwweiboxd suoq!’

piom 3xau weiboid ob usyl 3ou IT! SS2IPPYAODYD o306
pauwexboxd usesq saerY Spiom TIe JT ¥oayd! A'I93Uno) ZSJIOSP 9UOELUTTIHOSUYD

93Aq sssippe ULIY JUSWSIDUT USYl OS JT! A 'HSS9IppVY jourt

ISAOTTOXI IOJ HO9UD! SUOSUTTYOIYD o306

93AQq sSsoIppe MO JUSWSIDUT ! A /TIssaIppyY ZsJouT

ojueq 03 g£3ueq WoxF abueys’ oxued

9¥¢€00
Sv€00
¥¥€00
€¥€00
Zve00
Tv€00
0v€00
6£€00
8€€00
LEE00
9¢€¢€00
Se€e00
¥€€00
€€€00
2ee00
Te€00
0€€00
62¢00
82¢00
L2€00
9Z¢€00
S2e00
¥2e00
€2¢€00
2ze00
T2e00
02€00
6T€00
8T€00
LTE00
9T€00
ST1€00
¥T€00
€TE00
ZTe00
TT€00
0T€00
60€00
80¢€00
L0€00
90¢€00
S0€00
¥0€00
€0€00
¢0€00
T0€00
00€00

8000
asoo
gc0¢
4800
4AT0¢€

vd4dc
CHLT
9v0¢

Td4dc
YiaLZ
D8TO0
H8TO
sdLc

caLe
£50¢

cvac
cdLe
Hzo¢e

vLaAC
¥vd0

0¥Y0
A4
Y40

gdg4T
vd4T
6d4T
8d4T
LdAT

vaAT
€daT
cdaT

Td4T
0d4aT
AVAT
dvAT
av4at

VAT
avaT

YV4AT
6VAT
8VAT

LYAT
VAT

VAT
AT
€EVAT

DS00732A-page 17

Preliminary

© 2000 Microchip Technology Inc.

AN732

andano se

M 03UT ej3ep poaasTedax 396!
elep MaU TTiun J3Tem!
pPoATSD3I e3ep JT O9Ud!

poATSDaI ¢ O3 ejlep I0JF uo SLY¥ 39S’
ojueq O3 Jueq UMOUMUN WOIF obueyd!

jxod TeIIas oqeus’
uot3denax aTgeus !

ojueq O3 TMueq woxj obueyd !
UOTSSTWSURI]} STqRUS!

uot3ydo peoads ybTy 9231 pneq’

00TO ZUWP IOJF 0096 93X pneq 39s!

M DFIDY
T-$
AIDY ' TIId

INdILN0 SIV¥ 41304

Jaow
o306
sS339
I°q
osued

IOATODOYTRTIISS

03UBQ UT SUIN3ISI SUTINOI STYL'
M UT 234q U3TM WIN3dI PUue LJY¥SO UT POATSD91 9C 03 93Aq 103 3TeM!

NAJS ‘YI1SDY
NI¥D ‘¥YISDY

NAXI ‘YILSXL
HO¥d 'VISXL
DJads

INVISNOD dnvd

andano se utd SI¥ STqeuUs! INdIN0 SIY'gSTUL

T3ueq o3 o3jueq wox sbueyd!

odueq 03 g3jueq wox sbueyd!

uInjsal pue [Ted e buraes SUTIT-UT paoeTd

wns3{osyd SATIeTNUND 03 ppe’
Pox M utr 3Tnssax 3nd!

STqqtu YybTy 03 STJqTu MOT ppe!
(.4, 03 ,¥,) OT ppe asia!’

(.6, ©3 ,0,) LT ppe ‘3ou JT!
oAT3Tsod JT 3oayd!

234Aq MOT TITIDSY O3 ,¥,- ppe!
3x0od TeTaos woxj 923Aq mau 396!

uor3Tsod ybITy 03 STCqqTu ss0u!
STOqTuU 24a€S!

(.4, ©3 ,¥,) 0T ppe osia!’

(.6, ©3 ,0,) LT ppe ‘3ou JT!
oAT3Tsod JT 3oayud!

934Aq ybty TIOSSY 03 ,V,- ppe’
3xod Tetass woxj 93Aq mau 396!

futijzes ax038q JJO SI¥M 3ISS! INALNO SIA’'dI¥Od

uinisx

Isq
Isq
oxueg
Isq
Isq
Jmaow
MmTAOW
Foq
Tyueg
Isq
oxueg

:dnasgTeTISs

03ueq UT SUINJISI SUTINOI STIYL?

90 ueD puE 2OUC PI[T[eD ATUO ST SUIINOY!

Swwod snouoayoudkse I03 I¥y¥sn dn 39s!

g 'wuns3oayp
M‘93AkgxoH

g ‘93AgxsH
=10po0)

L0X0

D 'SNIVLS

Faxo
SATODOYTRTIIDS

A '91AgxsH
23AgxsH

©'0X0

L0X0

D 'SNIVLS

Faxo
SAT9D9YTRTISS

uinisx

Jmppe

Jaow
IMIOT
mIppe
mIppe
ss33q
mIppe

TTeR

Jdems
Jmaou
mnippe
mnippe
S8339
mnippe

TT®>

:93AgxoHI9D

0jUeq UT SUINISI SUTINOI STYL'

€6€00
26€00
T6€00
06€00
68¢€00
88€00
L8€00
98¢€00
S8¢€00
¥8¢€00
€8¢€00
28¢€00
T8¢€00
08¢€00
6L€00
8L€00
LLEOO
9L€00
SL€00
¥L€00
€L€00
2LE00
TLEOO
0L€00
69¢€00
89¢€00
L9€00
99¢€00
S9¢€00
¥9€00
€9¢00
29¢€00
T9¢€00
09¢€00
659€00
85€00
LS€00
99¢€00
S5€00
¥39€00
€9€00
25€00
TS€00
05€00
6¥€00
8% €00
LY€00

Y180
Ha4c
O8HT
980T

8000
86LT
8TOT

869T
8TST
6600
6T0¢€
980T

98%T

8000
€YLO
9280
9Y %0
Yod¢E
L0HE
€00T
AdHE
dgdLc

9YH0
9Y00
YodE
L0HE
€00T
AdHE
daLc

0HAT
Ad4T
Ha4T
aadat

va4t
6d4T
84T

a4t
yadt
€adatT
caat
Td4T

04T

g04T
¥o4T
604T
8D4T
LDAT
904T
So4AT
7Oo4dT
€04T

Zo4dT
04T
004T
AdAT
H94T
agdat
odAT

© 2000 Microchip Technology Inc.

Preliminary

DS00732A-page 18

AN732

UyseTJ woirj peax! ay¥ ‘' TNODEHE ¥sq

TNODHHA Fmaou
yser3y wexaboxd woxj spesi S1qeus’ 08%0 mTAOW
€jueq 03 giueq woij sbueys’ cyued

4 'HIavad Fmpue
obuel uTyalTMm Ssaippe desy! JTX0 MmTAOW ipesyyseTd

Zyueq UT USUM PSTTeD ST pue ¢3jueq UT SUINIdSI SUTINOI STYL!

uInjiaI pue [TeD ® buraes SUIT-UT podeld o UeD pue 20UO0 PIT[ed ATUO ST SUTINOY!
YIVadd Pue HIVAAd UT PIUIN3ISI eiep ‘JYAVAE PUe HIAYAA UT ST SSSIPPY!

Azowsw wexboxd yserF 9yl UT UOTILDO] B WOIJ peay’

uInisx

dou

putaTam oTIym 919y s3Tey JIossoooad! dou
ysel3 o3 buratam utbsq!’ M ' TNODHH 3sq

ZNODHA Fmaou

eex(MmTAOW

ZCNODHH Fmaou

S93TJIM SS9DDE pawrl op! 55%0 mTAOW

TNODHH Fmaou
yserJ wexboxd o3 s93Tam oTqeUd’ $8X%0 mTAOW
£jueq o3 ziueq woxj sbueyn! gyuedg $93TIMUSeTd

€jueq UT SUINIDI SUTINOI STYL'

VYIVAdd pue HIVJHId UT ejep ‘¥YAVEE Pue HIQVHHI UT SSSIPPV!
Azowsw weiboxd yselF Syl UT UOTILDOT © O3 93TIM!

uInisx
93Aq 3Twsuerl’ DHIXL Fmaou
-9 o306
A3dwe ST I933INg U] YDOUD! AIXI'TdId ss331q
-9 o306
Juss 9g uUed e3ep IT 995 03 SID ¥29Yo! INdNI SID‘dLiod 08339
0jueq 03 Jueq UMOUIUN WOoXJ =bueyos! oxueg :3TWSURILTRTISS

o3jueq UT SUJINISI SUTINOI STUL'
IYdYSN WOXJ I93STBSI M UT 234AQ JTWSURILL!

uInisx

0v¥00
6€£¥00
8E€¥00
LEV0O
9¢€¥%00
SEV00
¥E€¥00
€E€¥00
zeEY00
TeEV00
0ev00
62%00
8Z¥%00
LZ¥00
9Z¥%00
S2v00
¥Z¥%00
€2¥%00
Zzy00
TZ%00
0Z¥%00
6T¥00
8T¥00
LT¥00
9T¥%00
ST¥00
¥TI¥00
€T¥00
ZT¥%00
TI¥00
0T¥00
60%00
80%00
LO¥00
90%00
S0%00
¥0¥%00
€0%00
¢0¥%00
T0%00
00%00
66¢€00
86¢€00
L6€00
96¢€00
S6€00
¥6€00

Q07T

2800
080¢

4850
4AT0¢E

8000
0000
0000

08%T
asoo
Yvo€E
asoo
S50¢€

2800
780¢€

8000
6600
9d4C
O0HET
va4C
906T

8000

0d4T

g944T
Ya4T

LAAT
944T

SA4T
Pa4T
€441

caAT
T44T
044T
AHAT
H34T

addt
DHAT

6HAT
8HAT
LHAT
9HAT
SHAT
PHAT

THAT

DS00732A-page 19

Preliminary

© 2000 Microchip Technology Inc.

AN732

passaaddns %z ‘pajxodex T sobessan
passaaxddns 0 ‘pejxodax Q spbutuxem
0 SIOIIH

G96L 9914 SpIoM AIowsp weiboxd
L72 :posn spIoM AIxowspy wexboid

‘pesnun s30T Aiowsuw IS9Y30 TTY

Putpesx oTTUm s3jTem xossepoxd!

000¢
004T
084T
0PaT
004T
0000

A44T
H44T
ad4dat

““““““““““““““““““““““““““““ Yemmm e
XXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXX
XXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXX
AXXXX XXXXXXXXXXXXXXXX XX XXXXXXXXXXXXXX XX XXXXXXX
XXXXX XXXXXXXXXXXXXXXX —=—=—-~-=—=~-~-==~-==== ~—~-~-—-—-~-—-=-~-—-—-=—=—---
... XXX
(pesnun = ,-, ‘p9sn = ,X,) dYW IDVSN AYOWIN
aNd 8%%00
L¥%00
““ ! 9%%00
SHH00
uInisx v¥%00 8000
dou €¥%00 0000
dou Z¥v00 0000
T¥%00

© 2000 Microchip Technology Inc.

Preliminary

DS00732A-page 20

AN732

APPENDIX B: HEX FILE FORMAT

MPASM generates an 8-bit Intel hex file (INHX8M) by
default. The lines of this hex file all have the following
format:

:BBAAAATTHHHH.... HHCC

A colon precedes each line and is followed by hexadec-
imal digits in ASCII format.

BB is a 2-digit hexadecimal byte count representing the
number of data bytes that will appear on the line. This
is @ number from 0x00 to 0x10 and is always even
because the PIC16F87X parts have a 14-bit wide
memory and use two bytes for every program memory
word.

AAAA is a 4-digit hexadecimal address representing the
starting byte address of the data bytes that follow. To
get the actual program memory word address, the byte
address must be divided by two.

TT is a 2-digit hexadecimal record type that indicates
the meaning of the data on the line. It is 0x00 for a reg-
ular data record and 0x01 for an end of file record. The
boot code ignores all other record types.

HH are 2-digit hexadecimal data bytes that correspond
to addresses, incrementing sequentially from the start-
ing address earlier in the line. These bytes come in low
byte, high byte pairs, corresponding to each 14-bit pro-
gram memory word.

cc is a 2-digit hexadecimal checksum byte, such that

the sum of all bytes in the line including the checksum,
is a multiple of 256. The initial colon is ignored.

© 2000 Microchip Technology Inc. Prelimin ary

DS00732A-page 21

AN732

The code in Example B-1 will generate a line in a hex
file as shown in Figure B-1.

EXAMPLE B-1: CODE TO GENERATE A HEX FILE

ORG 0x17A
movlw 0xXFF

movwf PORTB

bsf STATUS, RPO
movwf TRISA

clrf TRISB

becf STATUS, RPO

FIGURE B-1: LINE OF HEX FILE

:0CO02F400FF30860083168500860183120F

Checksum is 0x0F

0x0C + 0x02 + O0xF4 + 0x00 + OxFF + 0x30 +
0x86 + 0x00 + 0x83 + 0x16 + 0x85 + 0x00 +
0x86 + 0x01 + 0x83 + 0x1l2 + OxOF = 0x0500

Result of addition® mod 256 is zero

Second program memory word is 0x0086
This corresponds to an instruction MOVWF 0x06®

First program memory word is 0x30FF
This corresponds to an instruction MOVLW O0xFF

Record type is 0x00 indicating a regular data record

Address of first program memory word is 0x02F4 + 2 = 0x017A

v
Number of data bytes is 0x0C

Number of program memory words is 0x0C + 2 = 0x06

Note 1: The calculation to test the checksum adds every byte (pair of digits) in the line of the hex file, including
the checksum itself.

2: The label PORTB is defined as 0x06 in the standard include file for the PIC16F877.

DS00732A-page 22 Prelimin ary © 2000 Microchip Technology Inc.

AN732

APPENDIX C: RS-232 HARDWARE HANDSHAKING SIGNALS

Understanding hardware flow control can be confusing,
because of the terminology used and the slightly differ-
ent way that handshaking is now implemented, com-
pared to the original specification.

RS-232 hardware handshaking was specified in terms
of communication between Data Terminal Equipment
(DTE) and Data Communications Equipment (DCE).
The DTE (e.g., computer terminal) was always faster
than the DCE (e.g., modem) and could receive data
without interruption. The hardware handshaking proto-
col required that the DTE would request to send data to
the DCE (with the request to send RTS signal) and that
the DCE would then indicate to the DTE that it was
cleared to send data (with the clear to send CTS sig-
nal). Both RTS and CTS were, therefore, used to con-
trol data flow from the DTE to the DCE.

The Data Terminal Ready (DTR) signal was defined so
that the DTE could indicate to the DCE that it was
attached and ready to communicate. The Data Set
Ready (DSR) signal was defined to enable the DCE to
indicate to the DTE that it was attached and ready to
communicate. These are higher level signals not gen-
erally used for byte by byte control of data flow,
although they can be used for this purpose.

Most RS-232 connections use 9-pin DSUB connectors.
A DTE uses a male connector and a DCE uses a
female connector. The signal names are always in
terms of the DTE, so the RTS pin on the female con-
nector of the DCE is an input and is the RTS signal from
the DTE.

Over time, the clear distinction between the DTE and
DCE has been lost. In many instances, two DTE
devices are connected together. In other cases, the
DCE device is able to send data at a rate that is too
high for the DTE to receive continuously. In practice,
the DTR output of the DTE has come to be used to con-
trol the flow of data to the DTE and now indicates that
the DCE (or other DTE) may send data. It no longer
indicates a request to send data to the DCE.

Itis common for a DTE to be connected to another DTE
(e.g., two computers), and in this case, they will both
have male connectors and the cable between them will
have two female connectors. This is known as a null
modem cable. The cable is usually wired in such a way
that each DTE looks like a DCE to the other DTE. To
achieve this, the RTS output of one DTE is connected
to the CTS input of the other DTE and vice versa. Each
DTE device will use its RTS output to allow the other
DTE device to transmit data and will check its CTS
input to determine whether it is allowed to transmit
data.

FIGURE C-1: DTE TO DCE CONNECTION

@
DSR input —6@ < gig ® @ DSR output—@w
RXD input ——Q@ < ® RXD output———Q2
RTS output—~?) RTS , @ RTS input— @
TXD output——@® -cl?_(rg > ©) TXD input——@®)
CTS input —® < ® CTS output—®
DTR output—g@ DTR ® @ DTR input—g@

GND GND

Data Terminal Equipment
DSUB9 male connector

DTE to DCE RS-232 cable
DSUB9 female to DSUB9 male connector

Data Communication Equipment
DSUB9 female connector

Data Terminal Equipment
DSUB9 male connector

FIGURE C-2: DTE TO DTE CONNECTION

@ GND GND———<®)
DSR input — DSR “ pR(© ©)
RXD input ——Q RXD « | @ DTR output———@
RTS output—~?) RTS > CTS ® CTS input—+®
TXD output———@®) TXD TXD ® TXD output———@®)
CTS input —-® (D:ig < 5;3 @ RTS output—-D
DTR output——@ > ® RXD input———2

©) I—bﬁ DSR input—

GND———<6) GND @ @

DTE to DTE RS-232 null modem cable
DSUB9 female to DSUB9 female connector

Data Terminal Equipment
DSUB9 male connector

© 2000 Microchip Technology Inc.

Preliminary

DS00732A-page 23

MICROCHIP

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

Microchip Technology Inc.

2355 West Chandler Blvd.

Chandler, AZ 85224-6199

Tel: 480-786-7200 Fax: 480-786-7277
Technical Support: 480-786-7627

Web Address: http://www.microchip.com

Atlanta

Microchip Technology Inc.

500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350

Tel: 770-640-0034 Fax: 770-640-0307
Boston

Microchip Technology Inc.

2 LAN Drive, Suite 120

Westford, MA 01886

Tel: 508-480-9990 Fax: 508-480-8575
Chicago

Microchip Technology Inc.

333 Pierce Road, Suite 180

Itasca, IL 60143

Tel: 630-285-0071 Fax: 630-285-0075
Dallas

Microchip Technology Inc.

4570 Westgrove Drive, Suite 160
Addison, TX 75001

Tel: 972-818-7423 Fax: 972-818-2924

Dayton

Microchip Technology Inc.

Two Prestige Place, Suite 150
Miamisburg, OH 45342

Tel: 937-291-1654 Fax: 937-291-9175
Detroit

Microchip Technology Inc.

Tri-Atria Office Building

32255 Northwestern Highway, Suite 190
Farmington Hills, Ml 48334

Tel: 248-538-2250 Fax: 248-538-2260
Los Angeles

Microchip Technology Inc.

18201 Von Karman, Suite 1090

Irvine, CA 92612

Tel: 949-263-1888 Fax: 949-263-1338
New York

Microchip Technology Inc.

150 Motor Parkway, Suite 202
Hauppauge, NY 11788

Tel: 631-273-5305 Fax: 631-273-5335
San Jose

Microchip Technology Inc.

2107 North First Street, Suite 590

San Jose, CA 95131

Tel: 408-436-7950 Fax: 408-436-7955

AMERICAS (continued)

Toronto

Microchip Technology Inc.

5925 Airport Road, Suite 200
Mississauga, Ontario L4V 1W1, Canada
Tel: 905-405-6279 Fax: 905-405-6253
ASIA/PACIFIC

China - Beijing

Microchip Technology, Beijing

Unit 915, 6 Chaoyangmen Bei Dajie

Dong Erhuan Road, Dongcheng District
New China Hong Kong Manhattan Building
Beijing, 100027, P.R.C.

Tel: 86-10-85282100 Fax: 86-10-85282104
China - Shanghai

Microchip Technology

Unit B701, Far East International Plaza,
No. 317, Xianxia Road

Shanghai, 200051, P.R.C.

Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
Hong Kong

Microchip Asia Pacific

Unit 2101, Tower 2

Metroplaza

223 Hing Fong Road

Kwai Fong, N.T., Hong Kong

Tel: 852-2-401-1200 Fax: 852-2-401-3431
India

Microchip Technology Inc.

India Liaison Office

No. 6, Legacy, Convent Road

Bangalore, 560 025, India

Tel: 91-80-229-0061 Fax: 91-80-229-0062
Japan

Microchip Technology Intl. Inc.

Benex S-1 6F

3-18-20, Shinyokohama

Kohoku-Ku, Yokohama-shi

Kanagawa, 222-0033, Japan

Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea

Microchip Technology Korea

168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku

Seoul, Korea

Tel: 82-2-554-7200 Fax: 82-2-558-5934

DNV Certification, Inc. DNV MSC
USA The Netherlands
Accredited by the RVA
ANSI+RAB
Qams

*

ailiaiydddy

DNV

1SO 9001 / QS-9000
REGISTERED FIRM

ASIA/PACIFIC (continued)

Singapore

Microchip Technology Singapore Pte Ltd.
200 Middle Road

#07-02 Prime Centre

Singapore, 188980

Tel: 65-334-8870 Fax: 65-334-8850
Taiwan

Microchip Technology Taiwan

10F-1C 207

Tung Hua North Road

Taipei, Taiwan

Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Denmark ApS
Regus Business Centre

Lautrup hoj 1-3

Ballerup DK-2750 Denmark

Tel: 45 4420 9895 Fax: 45 4420 9910
France

Arizona Microchip Technology SARL

Parc d’Activite du Moulin de Massy

43 Rue du Saule Trapu

Batiment A - ler Etage

91300 Massy, France

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany

Arizona Microchip Technology GmbH
Gustav-Heinemann-Ring 125

D-81739 Munchen, Germany

Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy

Arizona Microchip Technology SRL

Centro Direzionale Colleoni

Palazzo Taurus 1 V. Le Colleoni 1

20041 Agrate Brianza

Milan, Italy

Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom

Arizona Microchip Technology Ltd.

505 Eskdale Road

Winnersh Triangle

Wokingham

Berkshire, England RG41 5TU

Tel: 44 118 921 5858 Fax: 44-118 921-5835

05/16/00

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizonain July 1999. The
Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMSs and microperipheral
products. In addition, Microchip’s quality
system for the design and manufacture of
development systems is ISO 9001 certified.

All rights reserved. © 2000 Microchip Technology Incorporated. Printed in the USA. 7/00 e Printed on recycled paper.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates.
It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by
Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights
arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written
approval by Microchip. No licenses are conveyed, implicitly or otherwise, except as maybe explicitly expressed herein, under any intellectual property
rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other
trademarks mentioned herein are the property of their respective companies.

DS00732A-page 24

Preliminary

© 2000 Microchip Technology Inc.

	INTRODUCTION
	FEATURES
	OPERATION
	Integrating User Code and Boot Code
	Configuration Bits
	Determining Whether to Load New Code or to Execute User Code
	Receiving New User Code to Load into Program Memory
	Programming the FLASH Program Memory
	Error Handling

	IMPLEMENTATION
	How this Bootloader Works
	Integrating User Code and Boot Code
	Determining Whether to Load new Code or to Execute User Code
	Receiving New User Code to Load into Program Memory
	Decoding the Hex File
	Programming the FLASH Program Memory
	Error Handling
	Using the Bootloader
	Resources Used

	CONCLUSION
	APPENDIX A: SOURCE CODE – FILE BOOT877.ASM
	APPENDIX B: HEX FILE FORMAT
	APPENDIX C: RS-232 HARDWARE HANDSHAKING SIGNALS
	Determining Whether to Load New Code or to Execute User Code
	Receiving New User Code to Load into Program Memory
	Programming the FLASH Program Memory

