
Smart Internet
Appliance
Processor
(SIAP™)

AT75C1212
Multi-way
Conferencing
Software
Module

Rev. 2663A–INTAP–07/02
Features
• Software Module Dedicated to Voice Processing and Multi-way Conferencing
• Optimized for the AT75 Series Smart Internet Appliance Processor (SIAP™)
• Includes Several Run-time Configurable Stand-alone Algorithms

– G.723.1 Dual-rate Vocoder (5.3 Kbps/6.4 Kbps)
– VAD/CNG Silence Compression (Annexe A of G.723.1)
– G.711 µ-law or A-law Compression (64 Kbps)
– Arbitrary Tone Generator
– DTMF Detector
– Echo Canceller

• ITU-T G.723.1 and G.711 Standard-compliant
• Either up to Two Decode Channels with G.723.1 Standard, or up to Four Decode

Channels with G.711 Standard
• Available with a uClinux® Device Driver

Overview
The AT75C1212 Multi-way Conferencing Software Module is designed to run on the
OakDSPCore® subsystem of the AT75 series Smart Internet Appliance Processor. It
implements commonly-used voice processing algorithms:

• Low bit-rate G.723.1 vocoder for multimedia communication.

• Silence compression algorithm to efficiently handle periods of silence during
communication.

• High bit-rate voice compression algorithm.

• Arbitrary tone generator that can be used to generate any dual-tone or single-tone
frequency during a programmable duration.

• DTMF detector to decode incoming DTMF signaling.

• An echo canceller that eliminates the near-end echo.

The implemented algorithms have a number of parameters which can be programmed
at run time. These parameters modify the behavior of the DSP algorithms in such a
manner that they comply with the applicable standards under most situations. They
also allow the AT75C1212 to cope with many non-standard situations often encoun-
tered on private telephone infrastructures.

Moreover, the AT75C1212 module is able to perform multi-way conferencing. Either up
to two independent decode channels with G.723.1 or up to four decode channels with
either µ-law or A-law compression are available with no penalty on the voice quality.

The AT75C1212 takes advantage of the AT75 mailbox to exchange data with the on-
chip ARM7TDMI® core. The organization of the data communication channel makes it
easy to integrate the AT75C1212 interface into most operating systems.

For developers using uClinux, a specific device driver is supplied, thereby assuring the
extension of uClinux capabilities to the complete functionality of the AT75C1212 mod-
ule in a seamless manner.

This document is made up of three sections:

1. Functional description of the supported algorithms.

2. Description of the low level software interface.

3. Description of the uClinux device driver and full integration of AT75C1212
functionality.

Note: Mixing low-level and driver-level programming should be avoided.
1

Functional
Description

A functional block diagram of the AT75C1212 Multi-way Conferencing Software Module
is given in Figure 1.

Figure 1. Block Diagram

G.723.1 Dual Rate
Vocoder

This algorithm can be used for compressing the speech or other audio signal compo-
nents of a multimedia service at a very low bit rate. This coder has two bit rates
associated with it: 5.3 and 6.4 Kbps. The higher bit rate has better quality; it is based on
Multi Pulse Maximum Likelihood Quantization (MP-MLQ) technique. The lower bit rate
gives good quality and provides system designers with additional flexibility. This rate is
based on an Algebraic Code Linear Pre-diction (ACELP) technique.

This coder operates on 30 ms speech frames of 16-bit linear PCM samples (sampling
frequency is 8 kHz). An algorithmic delay of 7.5 ms is to be taken into account before
getting an encoded voice data frame. That leads to a total delay of 37.5 ms. The result-
ing encoded frames are 20 bytes long for 5.3 Kbps rate and 24 bytes long for 6.4 Kbps
rate. The encoding rate can be chosen by means of a configuration command sent to
the DSP. (See “Request Notification Messages” on page 9.)

VAD/CNG Voice Activity Detection (VAD) and Comfort Noise Generator (CNG) algorithms are
designed to work hand-in-hand with the G.723.1 vocoder. Silence compression tech-
niques are used to reduce the transmitted bit rate during silent intervals of speech. The
VAD side detects those silent intervals. CNG is used to produce a noise that matches
the actual background noise. CNG uses information provided by VAD to encode silent
intervals into Silence Insertion Descriptor (SID) frames that are 4 bytes long. It also re-
synthesizes 16-bit linear PCM samples of background noise with a SID frame input. The
VAD/CNG feature can be enabled or not by means of a configuration command sent to
the DSP. (See “Request Notification Messages” on page 9.)

G.711 µ-law and A-law
Voice Compression

µ-law and A-law are logarithmic compression techniques applied to speech signals.
They are done by simple operations that give no delay and excellent quality of speech.
However, the bit rate is very high (each 16-bit linear PCM speech sample gives an 8-bit
compressed sample leading to 64 Kbps) making this feature useful only for broadband
data networks. The compression/decompression algorithm can be chosen by means of
a configuration command send to the DSP. (See “Request Notification Messages” on
page 9.)

G.723.1 Encoder
+ VAD/CNG

G.711 µ-law/A-law
Encoder

G.711 µ-law/A-law Decoder
(Up to Four Intances)

G.723.1 Decoder + CNG
(Up to Two Intances)

DTMF
Detection

Tone Generation

ADC

DAC
To

Handset

From
Handset

Analog Signals Digital SignalsEcho
Path

Echo
Cancellation
2 AT75C1212
2663A–INTAP–07/02

AT75C1212
Echo Cancellation
Operation

The AT75C1212 contains an echo cancellation unit to eliminate near-end echo. This
unit is based on an adaptive FIR filter, which computes the expected echo and a sub-
tractor, which removes it from the transmitted signal. Since the echo characteristics can
slowly vary with time, an adaptive algorithm continuously updates the echo model.

A block diagram of the echo canceller is shown in Figure 2 below.

Figure 2. Block Diagram of Echo Canceller

Multi-way Conferencing AT75C1212 module allows several decoding channels to be active at the same time (up
to two decode channels with G.723.1 standard or up to four with either PCM µ-law or
PCM A-law).

DTMF Detector The DTMF detection task detects and decodes the 16 standard DTMF signals, in com-
pliance with the ITU-T Q.24 recommendation, with programmable threshold levels. The
application program, to comply with special (i.e. non-standard) situations, can tune
some parameters of the algorithm. In order to detect the DTMF signal, a bank of eight
resonant band pass filters is used. The central frequency of each filter corresponds to
one of the eight nominal values employed by standard DTMF generators. The power
level at each filter output is used to check for signal presence, signal condition require-
ments, and character condition requirements.

ADC

DAC

Adaptive
Algorithm FIR

Other
Processing
Algorithms
3
2663A–INTAP–07/02

Figure 3. DTMF Detector Block Diagram

The eight band pass filters are centered on the eight frequencies defined in the ITU-T
Q.24 specification. The bandwidth is specified according to the tolerance established in
this standard. Each filter rejects at least 20 dB of the other seven frequencies. The
power level is obtained by averaging the instantaneous energy during a window of 2 ms
for each of the eight filtered signals.

The detection of a DTMF signal requires that the following conditions be met:

• One frequency of each group is above a specified level.

• The power level difference between the low group tone and the high group tone is
within a given interval (twist).

• The power level of the highest tone of each group is above a specified level above
the other frequencies of the same group.

Signal
Condition
Detector

697 Hz

770 Hz

652 Hz

941 Hz

1209 Hz

1336 Hz

1477 Hz

1633 Hz

Power
Level

Power
Level

Power
Level

Power
Level

Power
Level

Power
Level

Power
Level

Power
Level

Out of Band
Rejection

Character
Condition Status

Signal
In
4 AT75C1212
2663A–INTAP–07/02

AT75C1212
The character condition is fulfilled when:

• The signal condition is preceded by a different character recognition condition or by
the continuous non-existence of a signal condition for a specified duration (silence).

• The signal condition for the same two tones exists continuously for a specified
duration. When the signal condition is satisfied for less than a specified duration, the
character is rejected. Once the character condition exists, it is unaffected by an
interval shorter than a specified duration.

Tone Generator The tone generation task generates a pure sine wave or a dual tone with programmable
frequencies, amplitudes and duration.

Low Level Interface This section describes how the AT75C1212 software is uploaded into the DSP sub-
system program memory. It also describes how the application software running on the
ARM and the AT75C1212 running on the DSP Subsystem exchange information
through Dual Port Mailboxes (DPMB).

This section assumes in-depth knowledge of the ARM/DSP Subsystem interface mail-
box system.

Voice Module Upload While the DSP subsystem is held in reset, its program memory is made visible in the
ARM memory space. This allows the ARM application to write a binary image of the
DSP software very easily.

When the DSP subsystem is taken out of reset, its program memory is switched from
the ARM memory space back to the DSP program space just before the first instruction
is fetched. This process is illustrated in Figure 4.

Figure 4. Voice Module Upload

Note: 1. Bit RA in Register SIAP_MD.

ASB

ARM
Core

Reset

Oak
Subsystem

SIAP_MD.RA

X-RAM Y-RAM

P-Bus

Oak Program
Memory

(1)
5
2663A–INTAP–07/02

Upload Process A typical DSP program uses a number of initialized variables. Typically, the initial values
are stored in the program space, and copied into their RAM location by the DSP start-up
routine. This leads to the following statements:

• Just after the boot routine has initialized the variables, the DSP subsystem exhibits
high redundancy since the same values exist in both program and data memories.

• The initial values stored in the program memory waste space and are not used
during operation.

• To improve the program memory usage, the software is loaded in two consecutive
steps.

• A small data initialization program is first loaded and executed. This program just
initializes the X- and Y-RAM to the values expected by the audio decoder software.
When the initialization is done, the program sends a DATA_INIT_DONE status
message to the ARM application through the status mailbox.

• Then, the DSP subsystem is put in reset and the program itself is loaded. This code
has no data init start-up routine. It assumes the RAMs are already initialized, which
saves program space. When the software is ready to work, it sends a
SW_INIT_DONE status message through the status mailbox.

The mailbox operation and status messages are described in the section “Mailbox
Usage” on page 7.

Binary Image Format When the system is idle, the AT75C1212 module is stored in the ARM memory space,
possibly in non-volatile memory. The module contains the data initialization code, the
application code, and additional formatting data. The various fields of the AT75C1212
binary image are described in Table 1.

Dual-port Mail Box
Configuration

The dual-port mail box (DPMB) is programmed in configuration 0 (as defined in the
AT75C DSP Subsystem Datasheet) and gives the configuration shown in Table 2 on
page 7. All the mailboxes allow read/write access from both sides. Arbitration is done
using the semaphores.

Table 1. Binary Image Fields

Field Name Offset from Start of File (Bytes) Length (Bytes) Description

INIT_OFFSET 0 4 Defines the position of the data initialization code from
the beginning of the module image.

INIT_LENGTH 4 4 Defines the length of the data initialization code (16-bit
words). Valid between 0 and 24576.

SW_OFFSET 8 4 Defines the position of the audio decoder program
from the beginning of the module image.

SW_LENGHTH 12 4 Defines the length of the audio decoder code (16-bit
words). Valid between 0 and 24576.

INIT_CODE 16 2*INIT_LENGTH Binary code of the data initialization program.

SW_CODE 16 + 2*INIT_LENGTH 2*SW_LENGTH Binary code of the application program.
6 AT75C1212
2663A–INTAP–07/02

AT75C1212
Note: 1. Base address is 0xFA000000.

Mailbox Access

ARM-to-Oak Mailboxes Before accessing the ARM-to-Oak mailboxes, the ARM must check that the correspond-
ing semaphore is cleared to 0. Then it can read or write the mailbox data. When the data
access is done, it must set the semaphore to 1 to notify the Oak that new data has
arrived.

Oak-to-ARM Mailboxes The ARM is notified that new data is available in a mailbox when the corresponding
semaphore is raised to 1, possibly triggering an interrupt. Then the ARM can access the
mailbox. When the access is finished, the ARM must clear the semaphore to release the
mailbox.

Mailbox Usage This section describes the specific purpose of each mailbox. The exchanged information
is formatted in structured messages. The message format and semantics are described
in sections “Request Notification Messages” on page 9 and “Status Notification Mes-
sages” on page 15.

Mailbox 0: RX Encoded Voice
Data

Used by the ARM to get from the OAK encoded speech frames (either G.711 data or
G.723.1 data)

Mailbox 1 to 4: TX Encoded
Voice Data

Used by the ARM to provide to the OAK encoded speech frames (either G.711 data or
G.723.1 data).

Mailbox 5: Oak Memory
Access

The ARM has the ability to send requests to read or write any location of the DSP mem-
ories, either in program or data space. This is useful for two purposes:

• DSP software debug

• Programming of the DSP peripherals under the ARM application control

Mailbox 6: Request
Notification

This mailbox is used by the ARM to pass requests to the DSP. These requests trigger
specific tasks in the DSP software. For example, request notification messages are
used to start or to stop the telephony algorithms.

Mailbox 7: Status Notification This mailbox is used by the DSP software to send status information. For example, a
status notification message is sent by the DSP software at the end of the data initializa-
tion to notify the ARM application that the data has been initialized.

Table 2. DPMB Configuration

Mailbox # Offset from Base(1) Length Direction Semaphore Address(1) Usage

0 0x000 0x80 ARM -> Oak 0x200 RX Voice Data

1 0x040 0x80 ARM <- Oak 0x204 TX Voice Data 1

2 0x080 0x40 ARM -> Oak 0x208 TX Voice Data 2

3 0x0C0 0x40 ARM -> Oak 0x20C TX Voice Data 3

4 0x100 0x40 ARM -> Oak 0x210 TX Voice Data 4

5 0x140 0x40 ARM <- Oak 0x214 DSP Memory Access

6 0x180 0x40 ARM -> Oak 0x218 Request Notification

7 0x1C0 0x40 ARM <- Oak 0x21C Status Notification
7
2663A–INTAP–07/02

TX/RX Encoded Voice
Data

The first two mailboxes deal with speech compressed frames. Each byte sent through
the mailbox is put in a 16-bit word where low byte is the original byte value and in high
byte are flags.

Assuming the data to be transmitted is in “char buf[0..N-1]”, it is formatted in the mailbox
as shown in Table 3 (otherwise the frame is ignored).

Note: 1. With FRAME_START = 0x8000 and FRAME_END = 0x4000

Delivered frames are of variable length:

• The length is encoded within the first two bits of buf[0] for G.723.1:

– buf[0] & 0x3 = 0 -> 24 bytes at a rate of 6.3 Kbits per second

– buf[0] & 0x3 = 1 -> 20 bytes for a rate of 5.3 Kbits per second

– buf[0] & 0x3 = 2 -> 4 bytes for silence compression frames

– buf[0] & 0x3 = 3 -> 1 byte: it follows a 4-byte frame while the silence scheme
is unchanged

• If the system is in G.711 mode, frames are 32 bytes long, independent of the
contents of buf[0].

Oak Memory Access The ARM has the ability to send requests to read or write any location of the Oak mem-
ories, either in program or data space. To achieve this, the mailbox 5 is divided into four
fields:

• Command field (mailbox base + 0): This is a request ID that tells what kind of
operation is to be performed. Valid codes are:

– 0x0001: Program memory read

– 0x0002: Program memory write

– 0x0003: Data memory read

– 0x0004: Data memory write

• Address field (base + 1 16-bit word): Should be written with the address location to
be accessed. This is the value of the address as it is seen by the Oak.

• Length field (base + 2 16-bit words): Should be written with the number of
consecutive locations to access.

• Data field (base + 3 16-bit words and following): For write access, should be filled
with the values to write. For read access, contains the read values requested by the
previous command.

Example of use: Write 0x1234 into data location 0xabcd of the 0ak:

1. Wait for *(0xfa000214) == 0, i.e., the semaphore is cleared

2. *(0xfa000140) = 0x0004 // data write command

3. *(0xfa000142) = 0xabcd // this is the address

4. *(0xfa000144) = 0x0001 // only one word to write

5. *(0cfa000146) = 0x1234 // this is the value

6. *(0xfa000214) = 1 // notify the Oak

Table 3. Speech Frame Format(1)

Word 0 ... Word i (i = 1... N - 2) ... Word N - 1

FRAME_START | buf[0] ... 0x0000 | buf[i] ... FRAME_END | buf[N - 1]
8 AT75C1212
2663A–INTAP–07/02

AT75C1212
Example of use: Read data locations 0xabcd and 0xabce from Oak:

1. Wait for *(0xfb000214) == 0, i.e. the semaphore is cleared

2. *(0xfa000140) = 0x0003 // data read command

3. *(0xfa000142) = 0xabcd // this is the first address to read

4. *(0xfa000144) = 0x0002 // two words to read

5. *(0xfa000214) = 1 // notify the Oak

6. Wait for the semaphore to go back to 0.

7. Read 0xfa000146 and 0xfa000148 to get the requested values.

Request Notification
Messages

Request messages are used by the ARM to trigger specific tasks running on the DSP.
These messages are always formatted in the same way. Figure 5 describes this format.

Figure 5. Request Notification Message Format

A message always begins with a LENGTH field. This field contains the number of words
of the message, excluding the LENGTH field itself.

The REQUEST_ID field is uniquely defined to designate the type of request. Each
request can be followed by a variable but well-defined number of PARAMETER fields.
These fields contain additional data needed to handle the request.

The description of the supported request messages is listed below. It is forbidden for the
ARM application to issue unsupported messages. However, should the ARM application
issue an unsupported or malformed request, the Oak software must recover correctly.

Decoding Configuration
Request

The decoding configuration request is sent to the Oak before any voice decoding
operation.

Example: 0x0003 0x0201 0x0000 0x0004

This request will set up Decode channel 0 with G.723.1 standard.

Mailbox Base Address

LENGTH Words

LENGTH

REQUEST_ID

PARAMETER[0]

...

PARAMETER[LENGTH - 2]

unused...

16 Bits

Table 4. Decoding Configuration Request

Word 0 0x0003 Message length = 0x0003

Word 1 0x0201 Request ID = 0x0201

Word 2 TX_ID TX Channel’s ID.

Valid: 0 to 3

Word 3 TX_TYPE TX Channel’s type:

G.723.1: TX_TYPE = 0x0004

µ-law: TX_TYPE = 0x0000

A-law: TX_TYPE = 0x0008
9
2663A–INTAP–07/02

Encoding Configuration
Request

The encoding configuration request is sent to the Oak before any voice data encoding
operation.

Example: 0x0002 0x0202 0x0004

This request will set up Record channel with G.723.1 standard.

Volume Configuration
Request

The volume configuration request is sent to the Oak to set volume parameters.

Volume Up Request The volume up request is sent to the Oak to increase the speakerphone volume. It can
be sent at anytime.

Volume Down Request The volume down request is sent to the Oak to lower the speakerphone volume. It can
be sent at anytime.

Table 5. Encoding Configuration Request

Word 0 0x0002 Message length = 0x0002

Word 1 0x0202 Request ID = 0x0202

Word 2 RX_TYPE RX Channel’s type:

G.723.1: RX_TYPE = 0x0004

µ-law: RX_TYPE = 0x0000

A-law: RX_TYPE = 0x0008

Table 6. Volume Configuration Request

Word 0 0x0003 Message length = 0x0003

Word 1 0x0300 Request ID = 0x0300

Word 2 MICR_GAIN

= 0x1000 *
10E(dB/20)

Gain for the microphone input.

Valid: 0x0040 (- 36 dB) to 0x7FFF (+18 dB)

Word 3 SPKR_GAIN

= 0x1000 *
10E(dB/20)

Gain for the speakerphone input.

Valid: 0x0040 (- 36 dB) to 0x7FFF (+18 dB)

Table 7. Volume Up Request

Word 0 0x0001 Message length = 0x0001

Word 1 0x0301 Request ID = 0x0301

Table 8. Volume Down Request

Word 0 0x0003 Message length = 0x0001

Word 1 0x0300 Request ID = 0x0302
10 AT75C1212
2663A–INTAP–07/02

AT75C1212
G.723.1 Configuration
Request

The G.723.1 configuration request should be sent to the Oak before enabling any
G.723.1 encoding operation, otherwise the default configuration will be used (6.4 Kbits/s
rate, VAD/CNG disabled).

Echo Cancellation
Configuration Request

The echo cancellation configuration request should be sent to the Oak before enabling
any echo cancellation operation, otherwise the default configuration will be used.

Echo Cancellation Step-size
Adjust Request

The echo cancellation step-size adjust request can be sent to the Oak at any time during
the echo cancellation operation in order to enhance convergence characteristics.

Table 9. G.723.1 Configuration Request

Word 0 0x0003 Message length = 0x0003

Word 1 0x0400 Request ID = 0x0400

Word 2 WORKRATE Work rate for encoding, valid values:

0: 6.4 Kbits/s rate

1: 5.3 Kbits/s rate

Word 3 USEVX 0: disable VAD for encoding

1: enable VAD for encoding

Table 10. Echo Cancellation Configuration Request

Word 0 0x0006 Message length = 0x0006

Word 1 0x0860 Request ID = 0x0860

Word 2 ECHO_SIZE Filter size in blocks of 16 – valid: 1 to 15
(between 16 and 240 filter coefficients)
Default: 4 (64 coefficients: cancellation up to an
echo path of 8ms)

Word 3 ECHO_UPDATE Number of coefficients updated at each sample
Interval. It must be a sub-multiple of the filter size
(otherwise an invalid parameter status is
generated)
Default: 64 (all the filter is updated)

Word 4 ECHO_STEPSZ Step size
Default: 0x7F00

Word 5 ECHO_TIMECST Time constant of power estimation filter (ms)
Default: 32 ms

Word 6 ECHO_MUCALC Time interval between calculations of normalized
step size in milliseconds.
Default: 1 ms

Table 11. Echo Cancellation Step-size Adjust Request

Word 0 0x0002 Message length = 0x0002

Word 1 0x0863 Request ID = 0x0863

Word 3 ECHO_STEPSZ Step size
11
2663A–INTAP–07/02

Start Decoding Request The start decoding request is sent to the Oak to start decode operations as configured
by the decoding configuration request.

Stop Decoding Request The stop decoding request is sent to the Oak to stop one of the active decode channels
as configured by the decoding configuration request.

Start Record Request The start record request is sent to the Oak to start the recording operation as configured
by encoding configuration request.

Stop Record Request The stop record request is sent to the Oak to stop the record channel as configured by
multi-way configuration request.

Start Echo Cancellation
Request

The start echo cancellation request is sent to the Oak to start echo cancellation opera-
tions on one channel.

Stop Echo Cancellation
Request

The stop echo cancellation request is sent to the Oak to stop echo cancellation on one
channel.

Table 12. Start Decoding Request

Word 0 0x0002 Message length = 0x0002

Word 1 0x0401 Request ID = 0x0401

Word 2 TX_ID TX Channel’s ID.

Valid: 0 to 3

Table 13. Stop Decoding Request

Word 0 0x0002 Message length = 0x0002

Word 1 0x0402 Request ID = 0x0402

Word 2 TX_ID TX Channel’s ID.

Valid: 0 to 3

Table 14. Start Record Request

Word 0 0x0001 Message length = 0x0001

Word 1 0x0403 Request ID = 0x0403

Table 15. Stop Record Request

Word 0 0x0001 Message length = 0x0001

Word 1 0x0404 Request ID = 0x0404

Table 16. Start Echo Cancellation Request

Word 0 0x0001 Message length = 0x0001

Word 1 0x0861 Request ID = 0x0861

Table 17. Stop Echo Cancellation Request

Word 0 0x0001 Message length = 0x0001

Word 1 0x0862 Request ID = 0x0862
12 AT75C1212
2663A–INTAP–07/02

AT75C1212
DTMF Detection Configuration
Request

Example: 0x0009 0x0830 0x0020 0x0020 0x2000 0x2000 0x4000 0x4000 0x001E
0x001E:

This message configures the DTMF detector with a detection level of 33 dB below the
reference level for each group. The minimum difference level between the strongest fre-
quency in a group and the others of the same group must be at least of 18 dB. The
maximum difference level between the two groups must be at most 12 dB. In order to
recognize a character, the signal must last for a minimum of 30 ms and then be followed
by 30 ms of silence.

DTMF Detection Start Request DTMF detection is started as soon as the DSP unit receives the DTMF detection start
request.

DTMF Detection Stop Request DTMF detection is stopped as soon as the DSP unit receives the DTMF detection stop
request.

Table 18. DTMF Detection Configuration Request

Word 0 0x0009 Message length = 0x0009

Word 1 0x0830 Request ID = 0x0830

Word 2 DTMFDET_LOWTHRES

= 65535 * 10E(dB/10)

Low Group Power Detection Threshold (default: -
40dB)

Word 3 DTMFDET_HIGHTHRES

= 65535* 10E(dB/10)

High Group Power Detection Threshold (default: -
40dB)

Word 4 DTMFDET_LOWREL

= 65535* 10E(dB/20)

Minimum difference level between the strongest
frequency in the low group and the other of the
same group (default: -20dB)

Word 5 DTMFDET_HIGHREL

= 65535* 10E(dB/20)

Minimum difference level between the strongest
frequency in the high group and the other of the
same group (default: -20dB)

Word 6 DTMFDET_POSTWIST

= 65535* 10E(dB/10)

Maximum Low to High twist
(default: -8dB)

Word 7 DTMFDET_ NEGTWIST

= 65535* 10E(dB/10)

Maximum High to Low twist
(default: -8dB)

Word 8 DTMFDET_DURATION Duration of signal condition for character
recognition in milliseconds

(default: 30 ms).

Word 9 DTMFDET_SILENCE Duration of silence condition for character
recognition in milliseconds (default: 30 ms).

Table 19. DTMF Detection Start Request

Word 0 0x0001 Message length = 0x0001

Word 1 0x0831 Request ID = 0x0831

Table 20. DTMF Detection Stop Request

Word 0 0x0001 Message length = 0x0001

Word 1 0x0832 Request ID = 0x0832
13
2663A–INTAP–07/02

Tone Generation
Configuration Request

Example: 0x000A 0x0801 0x6D4B 0x429F 0x4000 0x3FC4 0x6EFB 0x3000 0x0080
0x0080 0x0007

This message configures the generator to emit a dual tone with:

• First component. 697 Hz tone 6 dB below the reference level.

• Second component. 1336 Hz tone 8.5 dB below the reference level.

DTMF digit “2” will have been recognized.

The tone is emitted as soon as the DSP unit receives the request. After 128 ms of signal
and 128 ms of silence, a tone generation done status message will be emitted.

Table 21. Tone Generation Configuration Request

Word 0 0x000A Message length = 0x000A

Word 1 0x0800 Request ID = 0x0800

Word 2 32768 * cos (pi* TONE_FREQ /4000) Words 2 and 3 define the frequency of
the first generated tone.Word 3 32768 * sin (pi* TONE_FREQ /4000)

Word 4 TONE_LEVEL = 32768 * 10E(dB/20) Level of the first generated tone.

Word 5 32768 * cos (pi* TONE_FREQ /4000) Words 5 and 6 define the frequency of
the second component of generated
tone.Word 6 32768 * sin (pi* TONE_FREQ /4000)

Word 7 TONE_LEVEL = 32768 * 10E(dB/20) Level of the second generated tone.

Word 8 TONE_DURATION Duration of the generated tone in
milliseconds 0x0000 means unlimited
duration.

Word 9 SILENCE _DURATION Duration of the silence following the
tone in milliseconds 0x0000 means
unlimited duration.

Word 10 TONE_START Bit 0: 0: causes the generator to wait
for a tone generation start request
(request ID 0x0801) before the tone is
generated.
1: The generation starts immediately.

Bit 1: 0: adds the tone to all other
signals emitted on the speaker.

1: All other signals are blocked while
the tone is generated.

Bit 2: 0: single tone generation,
parameters of the second component
are ignored.
1: Dual tone generation.
14 AT75C1212
2663A–INTAP–07/02

AT75C1212
Tone Generation Start
Request

The tone starts as soon as the DSP unit receives tone generation start request. A tone
generation configuration request (request ID 0x0800) should be issued before the tone
generation start request is sent. If not, the behavior of the tone generator is
unpredictable.

Tone Generation Stop
Request

The tone stops as soon as the DSP unit receives the tone generation stop request. This
request can be used to stop an unlimited tone generation, or to halt the generator before
the predefined duration has elapsed (early termination).

Status Notification
Messages

Status messages are used by the Oak to inform the ARM application that a specific
event has occurred, or to respond to an earlier request. These messages are always
formatted in the same way. Figure 6 describes this format.

Figure 6. Status Notification Message Format

A status message always begins with a LENGTH field. This field contains the number of
words of the message, excluding the LENGTH field itself.

The STATUS_ID field is uniquely defined to designate the type of status. Each status
can be followed by a variable but well-defined number of PARAMETER fields. These
fields contain additional status information.

The description of the supported status messages is listed below. It is forbidden for the
Oak program to issue unsupported status messages. However, should the Oak program
issue an unsupported or malformed status message, the ARM application must recover
correctly.

Table 22. Tone Generation Start Request

Word 0 0x0001 Message length = 0x0001

Word 1 0x0801 Request ID = 0x0801

Table 23. Tone Generation Stop Request

Word 0 0x0001 Message length = 0x0001

Word 1 0x0802 Request ID = 0x0802

Mailbox Base Address

LENGTH Words

LENGTH

STATUS_ID

PARAMETER[0]

...

PARAMETER[LENGTH - 2]

unused...

16 Bits
15
2663A–INTAP–07/02

AT75C1212 Module
Initialization Status

This initialization status message is issued when the AT75C1212 module has finished
initializing itself and is ready to accept request messages. The ARM should not issue
any request messages before this status message has been received.

Bad Format Status The Oak issues a bad format status message when it has received a request message
in which the LENGTH field is not compatible with the request type. The Oak ignores the
corresponding malformed request.

Unknown Request Status The Oak issues an unknown request status message when it has received a request
message with an unsupported request ID field.

Bad Parameter Status The Oak issues a bad parameter status message when it has received a request mes-
sage with a parameter having an invalid value.

G.723.1 Encoding Stopped
Status Message

The G.723.1 encoding stopped status message is issued if the encode task was
stopped by a stop encoding request (request ID 0x0404).

Table 24. AT75C1212 Module Initialization Status

Word 0 0x0001 Message length = 0x0001

Word 1 0x8002 Request ID = 0x8002

Table 25. Bad Format Status

Word 0 0x0002 Message length = 0x0002

Word 1 0x80FF Status ID = 0x80FF

Word 2 BAD_FORMAT_VALUE Contains the request ID of the malformed request
message.

Table 26. Unknown Request Status

Word 0 0x0002 Message length = 0x0002

Word 1 0x80FE Status ID = 0x80FE

Word 2 UNKNOWN_REQ_VALUE Contains the request ID of the malformed request
message.

Table 27. Bad Parameter Status

Word 0 0x0002 Message length = 0x0002

Word 1 0x80FD Status ID = 0x80FD

Word 2 UNKNOWN_REQ_VALUE Contains the request ID of the malformed request
message.

Table 28. G.723.1 Encoding Stopped Status Message

Word 0 0x0001 Message length = 0x0001

Word 1 0x8404 Status ID = 0x8404
16 AT75C1212
2663A–INTAP–07/02

AT75C1212
G.711 Encoding Stopped
Status Message

The G.711 encoding stopped status message is issued if the encode task was stopped
by a stop encoding request (request ID 0x0404).

G.723.1 Decoding Stop Status
Message

This status message is issued if one G.723.1 decoding task was stopped by a stop
decoding request (request ID 0x0402).

G.711 Decoding Stop Status
Message

This status message is issued if one G.711 decoding task was stopped by a stop decod-
ing request (request ID 0x0402).

DTMF Detection Status The DTMF detection status message is issued each time a valid DTMF digit is detected
on the line-in input signal.

The association of the digit codes to each of the sixteen possible DTMF tones is shown
in Table 33.

Table 29. G.711 Encoding Stopped Status Message

Word 0 0x0001 Message length = 0x0001

Word 1 0x8414 Status ID = 0x8414

Table 30. G.723.1 Decoding Stop Status Message

Word 0 0x0002 Message length = 0x0002

Word 1 0x8402 Status ID = 0x8402

Word 2 TX_N G.723.1 decode channel which has been stopped.

Valid: 0 to 3

Table 31. G.711 Decompression Stopped Status Message

Word 0 0x0002 Message length = 0x0002

Word 1 0x8412 Status ID = 0x8412

Word 2 TX_N G.711 decoding channel which has been stopped.

Valid: 0 to 3

Table 32. DTMF Detection Status

Word 0 0x0002 Message length = 0x0002

Word 1 0x8831 Status ID = 0x8831

Word 2 DTMFDET_DIGIT Detected DTMF digit

Table 33. Map of DTMF Tones and Associated Digit Code

1209 Hz 1336 Hz 1477 Hz 1633 Hz

697 Hz 1 0x01 2 0x02 3 0x03 A 0x0D

770 Hz 4 0x04 5 0x05 6 0x06 B 0x0E

852 Hz 7 0x07 8 0x08 9 0x09 C 0x0F

941 Hz * 0x0B 0 0x0A # 0x0C D 0x00
17
2663A–INTAP–07/02

Tone Generation Status The tone generation status message is issued when the tone duration has elapsed. It is
not issued if the tone was stopped by a tone generation stop request (request ID
0x0802).

AT75C1212 Device
Driver

The AT75C1212 software module is supplied with a device driver for uClinux. This
device driver integrates all the AT75C1212 functionalities into the uClinux kernel. The
features of the AT75C1212 modules can be accessed through the standard uClinux
API. This API is documented in the following section.

AT75C1212 Device Driver
Overview

Under uClinux, the device drivers are accessed through file system entries. The
AT75C1212 device driver is a character type driver. The associated virtual file can be
opened, read from, written to and closed like any regular file. The major role of the
device driver is to redefine the file access methods, so that the application can interact
with the underlying device, as if it were a file, through the standard file manipulation
functions. It provides the application with an abstraction layer which hides the low level
interface on top of which it sits.

The AT75C1212 device driver is operated through several file systems:

• /dev/g723encoder0 which is used for G.723.1 encoding operations,

• /dev/g723decoder0 to /dev/g723decoder3 which are used for G.723.1 decoding
operations,

• /dev/g711encoder0 which is used for G.711 µ-law/A-law encoding operations,

• /dev/g711decoder0 to /dev/g711decoder3 which are used for G.711 µ-law/A-law
decoding operations,

• /dev/tones which is used for DTMF detection and arbitrary tone generation.

G723.1 Encoder Driver
Operations

The G.723.1 encoder driver redefines the following file manipulation functions:

• int open(const char *path, int flags, mode_t mode);

• int read(int fd, void *buf, int count);

• int select(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval
*timeout);

• int close(int fd);

Additionally, the ioctl function controls additional features of the AT75C1212 which are
not accessible with the other methods. These special commands are described below.
The prototype of the ioctl function is:

• int ioctl(int fd, int request, char *argp);

Open Method

Synopsis #include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open(const char *path, int flags);

Table 34. Tone Generation Status

Word 0 0x0001 Message length = 0x0001

Word 1 0x8802 Status ID = 0x8802
18 AT75C1212
2663A–INTAP–07/02

AT75C1212
Description The /dev/g723encoder0 virtual file must be opened prior to any encoding operation on
the g723.1 encoder device driver. This is done with the open method, the same as for
any regular file. The main operation performed by the open method of the device driver
is to load and initialize the corresponding DSP software in the DSP subsystem.

When this initialization is successful, the open system call converts the file “path” name
("/dev/g723encoder0" in this case) into a file descriptor. This file descriptor is a non-neg-
ative integer which will be used in subsequent I/O operations such as read, ioctl, etc.

“flags” should be O_RDONLY which request opening the file in read-only mode.

“flags” may also be bitwise-or'd with O_NONBLOCK. In this case, neither the open nor
any subsequent operations on the file descriptor which is returned will cause the calling
process to wait.

Return Values Open() returns the new file descriptor, or -1 if an error occurred. In the latter case, the
global variable errno is set appropriately to reflect the cause of error. Possible values of
errno are:

• ENODEV: This indicates that the underlying hardware does not exist or is not
supported. One reason can be corruption of the binary DSP software which could
not be loaded into the DSP subsystem.

• EBUSY: The underlying hardware is busy. Most probably there is another process
using the same resource.

• ENOMEM: A memory allocation requested by the driver failed. This happens when
the system memory is full.

Example int fd = open("/dev/g723encoder0", O_RDONLY | O_NONBLOCK);

This opens the G.723.1 encoder device driver in read mode. It selects non blocking I/O
for read operations. The file descriptor is returned in “fd”. If “fd” is positive, the g723.1
encoder device is readily available for read operations.
19
2663A–INTAP–07/02

Close Method

Synopsis #include <unistd.h>

int close(int fd);

Description When the G.723.1 encoder device is no longer needed by the application, it can be
closed to release system resources. This is done through the close method. The param-
eter is the file descriptor of the file to be closed.

Return Values Close() returns 0 on success, or -1 if an error occurred. In the latter case the global vari-
able is set appropriately to reflect the cause of error. The only possible value for errno is
EBADF which means that “fd” is not a valid file descriptor.

Example close(fd);

This closes the G.723.1 encoder device.

Read Method

Synopsis #include <unistd.h>

int read(int fd, void *buf, int count);

Description As for any file descriptor, the read() method attempts to read “count” bytes from “fd” into
the buffer starting at “buf”. When “fd” is a file descriptor attached to /dev/g723encoder0,
the bytes read correspond to G.723.1 frames.

Both blocking and non-blocking reads are supported. In blocking mode, read() will return
only when there are G.723.1 valid frames available to read. Although the process is
blocked, it is safely put on a system wait queue and does not consume CPU time.

In non-blocking mode, the read function returns immediately even if no data is available.
In this case the return value is -1 and errno is set to EAGAIN.

Return Values On success, the number of bytes read is returned. It is not an error if this number is
smaller than the number of bytes requested. This may happen, for example, because
fewer bytes are actually available at that moment, or because read was interrupted by a
signal.

On error, -1 is returned and errno is set appropriately. Possible values for errno follow:

• EAGAIN: non-blocking I/O has been selected using O_NONBLOCK and no data
was immediately available.

• EBADF: “fd” is not a valid descriptor.

• EINVAL: the /dev/g723encoder0 file was not open for reading.

• EFAULT: “buf” is outside the accessible address space.

Example ret = read(fd,buf,256);

This reads at most 256 bytes from file descriptor “fd” (assumed here to be related to
/dev/g723encoder0), and stores them into the memory location pointed to by “buf”.

Select Method

Synopsis #include <sys/time.h>

#include <sys/types.h>
20 AT75C1212
2663A–INTAP–07/02

AT75C1212
#include <unistd.h>

int select(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
struct timeval *timeout);

Description Select() waits for a number of file descriptors to change status. The main usage of
select() is to check if data (G.723.1 frames) are available for reading without having to
actually read the data. In particular, when blocking operation is selected, it advises if a
read access will block or not. This is similar to a polling operation.

Three independent sets of descriptors are watched.

1. Those listed in “readfds” will be watched to see if characters become available
for reading.

2. Those in “writefds” will be watched to see if a write will not block (not used there).

3. Those in “exceptfds” will be watched for exceptions (not used there).

On exit, the sets are modified in place to indicate which descriptors actually changed
status.

Four macros are provided to manipulate the sets.

• FD_ZERO will clear a set.

• FD_SET and FD_CLR add or remove a given descriptor from a set.

• FD_ISSET tests to see if a descriptor is part of the set. This is useful after select
returns.

“n” is the highest-numbered descriptor in any of the three sets, plus 1.

“timeout” is an upper limit on the amount of time elapsed before select returns. It may
be zero, causing select to return immediately. If timeout is NULL (no timeout),
select can block indefinitely.

Return Values On success, select returns the number of descriptors contained in the descriptor sets,
which may be zero if the timeout expires before an event occurs.

On error, -1 is returned, and errno is set appropriately. The sets and timeout become
undefined, therefore their contents are not to be relied upon after an error.

Example fd_set rfds;

struct timeval tv;

int retval;

/* initialize file descriptor list */

FD_ZERO(&rfds);

FD_SET(df, &rfds);

/* define delay */

tv.tv_sec = 0;

tv.tv_usec = 50000;

retval = select(df+1, &rfds, NULL, NULL, &tv); /* df supposed to be a file
descriptor related to /dev/g723encoder0 */

if (retval > 0)

printf("G.723.1 frame received.\n");

else

printf("G.723.1 frame not received within 50 ms.\n");

This code checks if a G.723.1 frame has been received. The time-out is 50 ms.
21
2663A–INTAP–07/02

IOCTL Method

Synopsis #include <sys/ioctl.h>

int ioctl(int fd, int request, char *argp);

Description The ioctl() function manipulates the underlying device parameters of the g723.1 encoder
device.

“fd” is the file descriptor upon which ioctl() will act. It should be related to the
/dev/g723encoder0 virtual file.

“request” defines which predefined command to send to the G.723.1 encoder device.
Some commands may require additional arguments which are stored or received in the
buffer pointed to by “argp”. The ioctl() requests supported by the G.723.1 device driver
are described below:

• REC_CONFIG: This command is used to configure the encoding operation of the
multiway driver with G.723.1 payload. This must be done before performing any
other operation on the device. There is no additional argument.

• G723_CONFIG: This command is used to configure the characteristics of the
G.723.1 encoder algorithm. An additional parameter is used as defined below:
struct g723cod_args {

unsigned short enc_rate;

unsigned short vad_cng;

};

The fields and the values to be written are those defined in the section “Low Level Inter-
face” on page 5. This should be done before any other operation on the device is
performed if default values are not appropriate.

• START_RECORD: This command is used to start the G.723.1 encoding operation.
There is no additional argument.

• STOP_RECORD: This command is used to stop the G.723.1 encoding operation.
There is no additional argument.

• ECHOCANCEL_CONFIG: This command is used to configure the characteristics of
the echo canceller algorithm. An additional parameter is used as defined below:
struct echocancel_args {

unsigned short echo_size;

unsigned short echo_update;

unsigned short echo_stepsz;

unsigned short echo_timeconst;

unsigned short echo_mucalc;

};

• The fields and the values to be written are those defined in the “Request Notification
Messages” section of this document. This should be done before performing any
other operation on the device if default values are not appropriate.

• ECHOCANCEL_START: This command is used to start the echo cancelling
operation. There is no additional argument.

• ECHOCANCEL_STOP: This command is used to stop the echo cancelling
operation. There is no additional argument.

• OAKMEM_ACCESS: This command is used to read/write the memory space of the
OAK, either program or data. It should be used with caution (primarily for OAK
debug). An additional parameter is used as defined below:
22 AT75C1212
2663A–INTAP–07/02

AT75C1212
struct oakmem_args {

unsigned short command;

unsigned short address;

unsigned short length;

unsigned short data[29];

};

The fields and the values to be written are those defined in the section: “Oak Memory
Access” on page 8.

Example struct g723cod_args {

unsigned short enc_rate;

unsigned short vad_cng;

} *g723_conf;

fd723_conf->enc_rate=1;//5.3 kbps rate for encoder

g723_conf->vad_cng=1;//VAD/CNG algorithm active

ioctl(fd, G723_CONFIG, g723_conf);

This configures the G.723.1 algorithm. “fd” refers to /dev/g723encoder0 virtual file.

G723.1 Decoder Driver
Operations

The G.723.1 decoder driver redefines the following file manipulation functions:

• int open(const char *path, int flags, mode_t mode);

• int write(int fd, void *buf, int count);

• int select(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval
timeout);

• int close(int fd);

Additionally, the ioctl function controls additional features of the AT75C1212 which are
not accessible with the other methods. These special commands are described below.
The prototype of the ioctl function is:

• int ioctl(int fd, int request, char *argp);

These methods apply to the four devices "/dev/g723decoderN" where N stands for
0,1,2,3. The four devices have the same MAJOR but have differing MINOR.

Open Method

Synopsis #include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open(const char *path, int flags);

Description One /dev/g723decoderN virtual file must be opened prior to any decoding operation on
the corresponding G.723.1 decoder device driver. This is made with the open() method,
the same as for any regular file. The main operation performed by the open() method of
the device driver is to load and initialize the corresponding DSP software in the DSP
subsystem.

When this initialization is successful, the open system call converts the file “path” name
("/dev/g723decoder0" for example) into a file descriptor. This file descriptor is a non-
negative integer which will be used in subsequent I/O operations such as write(), ioctl(),
etc.

“flags” should be O_WRONLY which requests opening the file in write-only mode.
23
2663A–INTAP–07/02

“flags” may also be bitwise-or'd with O_NONBLOCK. In this case, neither the open nor
any subsequent operations on the file descriptor which is returned will cause the calling
process to wait.

Return Values Open “return the new file descriptor”, or -1 if an error occurred. In the latter case, the glo-
bal variable errno is set appropriately to reflect the cause of error. Possible values of
errno are:

• ENODEV: This indicates that the underlying hardware does not exist or is not
supported. One reason can be corruption of the binary DSP software which could
not be loaded into the DSP subsystem.

• EBUSY: The underlying hardware is busy. Most probably there is another process
using the same resource.

• ENOMEM: A memory allocation requested by the driver failed. This happens when
the system memory is full.

Example int fd = open("/dev/g723decoder0", O_WRONLY | O_NONBLOCK);

This opens the G.723.1 decoder device driver in write mode, decode channel chosen is
0. It selects non blocking I/O for write operations. The file descriptor is returned in “fd”. If
“fd” is positive, the G.723.1 decoder device 0 is readily available for read operations.

Close Method

Synopsis #include <unistd.h>

int close(int fd);

Description When the G.723.1 decoder device is no longer needed by the application, it can be
closed to release system resources. This is done through the close() method. The
parameter is the file descriptor of the file to be closed.

Return Values Close() returns 0 on success, or -1 if an error occurred. In the latter case the global vari-
able is set appropriately to reflect the cause of error. The only possible value for errno is
EBADF which means that fd is not a valid file descriptor.

Example close(fd);

This closes the G.273 decoder device.

Write Method

Synopsis #include <unistd.h>

int write(int fd, void *buf, int count);

Description As for any file descriptor, the write() method attempts to write “count” bytes from the
buffer starting at buf to the file descriptor “fd”. When “fd” is a file descriptor attached to
/dev/g723decoderN, the bytes written correspond to the G.723.1 frames which are to be
emitted by the G.723.1 decoder device.

Both blocking and non-blocking writes are supported. In blocking mode, write() will
return only when the G.723.1 decoder device is ready to accept data. Although the pro-
cess is blocked, it is safely put on a system wait queue and does not consume CPU
time.
24 AT75C1212
2663A–INTAP–07/02

AT75C1212
In non-blocking mode, the write function returns immediately even if no data is available.
In this case the return value is -1 and errno is set to EAGAIN. Most often, the application
will try again to write until the entire data is transferred.

Return Values On success, the number of bytes written is returned. This corresponds to the number of
G.723.1 bytes actually emitted. It is not an error if this number is smaller than the num-
ber of bytes requested. This may happen, for example, because fewer bytes are actually
acceptable at that moment due to lack of memory, or because write was interrupted by a
signal.

On error, -1 is returned and errno is set appropriately. Possible values for errno follow:

• EAGAIN: non-blocking I/O has been selected using O_NONBLOCK and no data
was immediately available.

• EBADF: “fd” is not a valid descriptor.

• EINVAL: /dev/g723decoderN file was not opened for writing.

• EFAULT: “buf” is outside the accessible address space.

Example ret = write(fd,buf,256);

This writes at most 256 bytes to file descriptor “fd” (assumed here to be related to one
/dev/g723decoderN), from the memory location pointed to by “buf”.

Select Method

Synopsis #include <sys/time.h>

#include <sys/types.h>

#include <unistd.h>

int select(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
struct timeval *timeout);

Description Select() waits for a number of file descriptors to change status. The main usage of
select() is to check if data (G.723.1 frames) are available for writing without having to
actually write the data. In particular, when blocking operation is selected, it indicates if a
write access will block or not. This is similar to a polling operation.

Three independent sets of descriptors are watched.

1. Those listed in “readfds” (not used there) will be watched to see if characters
become available for reading.

2. Those in “writefds” will be watched to see if a write will not block.

3. Those in “exceptfds” will be watched for exceptions (not used there).

On exit, the sets are modified in place to indicate which descriptors actually changed
status.

Four macros are provided to manipulate the sets.

• FD_ZERO will clear a set.

• FD_SET and FD_CLR add or remove a given descriptor from a set.

• FD_ISSET tests to see if a descriptor is part of the set. This is useful after select
returns.

“n” is the highest-numbered descriptor in any of the three sets, plus 1.
25
2663A–INTAP–07/02

“timeout” is an upper limit on the amount of time elapsed before select returns. It may
be zero, causing select to return immediately. If timeout is NULL (no timeout),
select can block indefinitely.

Return On success, select() returns the number of descriptors contained in the descriptor sets,
which may be zero if the timeout expires before an event occurs.

On error, -1 is returned, and errno is set appropriately, the sets and timeout become
undefined, therefore their contents are not to be relied upon after an error.

Example fd_set wfds;

struct timeval tv;

int retval;

/* initialize file descriptor list */

FD_ZERO(&wfds);

FD_SET(df, &wfds);

/* define delay */

tv.tv_sec = 0;

tv.tv_usec = 50000;

retval = select(df+1, NULL, &wfds, NULL, &tv); /* df supposed to be a file
descriptor related to /dev/g723decoderN */

if (retval > 0)

printf("G.723.1 frame requested by DSP.\n");

else

printf("No G.723.1 frame requested within 50 ms.\n");

This code checks if a G.723.1 frame is requested by the DSP. The time-out is 50 ms.

IOCTL Method

Synopsis #include <sys/ioctl.h>

int ioctl(int fd, int request, char *argp);

Description The ioctl() function manipulates the underlying device parameters of the G.723.1
decoder devices.

“fd” is the file descriptor upon which ioctl() wi ll act. I t is related to on of the
/dev/g723decoderN virtual file.

“request” defines which predefined command to send to the G.723.1 decoder device.
Some commands may require additional arguments which are stored or received in the
buffer pointed to by “argp”. The ioctl() requests supported by the G.723.1 decoder
device driver are described below:

• DEC_CONFIG: This command is used to configure the decoding operation of the
multiway driver with G.723.1 payload. This must be done before performing any
other operation on the device. There is no additional argument.

• START_DECODE: This command is used to start the G.723.1 decoding operation.
There is no additional argument.

• STOP_ DECODE: This command is used to stop the G.723.1 decoding operation.
There is no additional argument.

• OAKMEM_ACCESS: This command is used to read/write the memory space of the
OAK, either program or data. It should be used with caution, (primarily for OAK
debug). An additional parameter is used as defined below:
struct oakmem_args {

unsigned short command;
26 AT75C1212
2663A–INTAP–07/02

AT75C1212
unsigned short address;

unsigned short length;

unsigned short data[29];

};

The fields and the values to be written are those defined in the section: “Oak Memory
Access” on page 8.

Example ioctl(fd, DEC_CONFIG, NULL);

Assume that “fd” is referring to /dev/g723decoder1. This ioctl configures the decode
channel 1 with the G.723.1 payload.

G.711 Encoder Driver
Operations

The G.711 encoder driver redefines the following file manipulation functions:

• int open(const char *path, int flags, mode_t mode);

• int read(int fd, void *buf, int count);

• int select(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval
*timeout);

• int close(int fd);

Additionally, the ioctl() function controls additional features of the AT75C1212 which are
not accessible with the other methods. These special commands are described below.
The prototype of the ioctl() function is:

• int ioctl(int fd, int request, char *argp);

Open Method

Synopsis #include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open(const char *path, int flags);

Description The /dev/g711encoder0 virtual file must be opened prior to any encoding operation on
the G.711 encoder device driver. This is made with the open() method, the same as for
any regular file. The main operation performed by the open() method of the device driver
is to load and initialize the corresponding DSP software in the DSP subsystem.

When this initialization is successful, the open system call converts the file “path” name
("/dev/g711encoder0" in this case) into a file descriptor. This file descriptor is a non-neg-
ative integer which will be used in subsequent I/O operations such as read(), ioctl(), etc.

“flags” should be O_RDONLY which request opening the file in read-only mode.

“flags” may also be bitwise-or'd with O_NONBLOCK. In this case, neither the open nor
any subsequent operations on the file descriptor which is returned will cause the calling
process to wait.

Return Values Open return the new file descriptor, or -1 if an error occurred. In the latter case, the glo-
bal variable errno is set appropriately to reflect the cause of error. Possible values of
errno are:

• ENODEV: This indicates that the underlying hardware does not exist or is not
supported. One reason can be a corruption of the binary DSP software which could
not be loaded into the DSP subsystem.

• EBUSY: The underlying hardware is busy. Most probably there is another process
using the same resource.
27
2663A–INTAP–07/02

• ENOMEM: A memory allocation requested by the driver failed. This happens when
the system memory is full.

Example int fd = open("/dev/g711encoder0", O_RDONLY | O_NONBLOCK);

This opens the G.711 encoder device driver in read mode. It selects non blocking I/O for
read operations. The file descriptor is returned in “fd”. If “fd” is positive, the g711
encoder device is readily available for read operations.

Close Method

Synopsis #include <unistd.h>

int close(int fd);

Description When the G.711 encoder device is no longer needed by the application, it can be closed
to release system resources. This is done through the close method. The parameter is
the file descriptor of the file to be closed.

Return Values Close() returns 0 on success, or -1 if an error occurred. In the latter case the global vari-
able is set appropriately to reflect the cause of error. The only possible value for errno is
EBADF which means that “fd” is not a valid file descriptor.

Example close(fd);

This closes the G.711 encoder device.

Read Method

Synopsis #include <unistd.h>

int read(int fd, void *buf, int count);

Description As for any file descriptor, the read() method attempts to read “count” bytes from “fd” into
the buffer starting at “buf”. When “fd” is a file descriptor attached to /dev/g711encoder0,
the bytes read correspond to G.711 frames recognized by the G.711 encoder device.

Both blocking and non-blocking reads are supported. In blocking mode, read() will return
only when there are G.711 valid frames available to read. Although the process is
blocked, it is safely put on a system wait queue and does not consume CPU time.

In non-blocking mode, the read function returns immediately even if no data is available.
In this case the return value is -1 and errno is set to EAGAIN.

Return Values On success, the number of bytes read is returned. It is not an error if this number is
smaller than the number of bytes requested. This may happen, for example, because
fewer bytes are actually available at that moment, or because read was interrupted by a
signal.

On error, -1 is returned and errno is set appropriately. Possible values for errno follow:

• EAGAIN: non-blocking I/O has been selected using O_NONBLOCK and no data
was immediately available.

• EBADF: fd is not a valid descriptor.

• EINVAL: /dev/g711encoder0 file was not open for reading.

• EFAULT: “buf” is outside the accessible address space.

Example ret = read(fd,buf,256);
28 AT75C1212
2663A–INTAP–07/02

AT75C1212
This reads at most 256 bytes from file descriptor “fd” (assumed here to be related to
/dev/g711encoder0), and stores them into the memory location pointed to by “buf”.

Select Method

Synopsis #include <sys/time.h>

#include <sys/types.h>

#include <unistd.h>

int select(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
struct timeval *timeout);

Description Select() waits for a number of file descriptors to change status. The main usage of
select() is to check if data (G.711 frames) are available for reading without having to
actually read the data. In particular, when blocking operation is selected, it advises if a
read access will block or not. This is similar to a polling operation.

Three independent sets of descriptors are watched:

1. Those listed in “readfds” will be watched to see if characters become available
for reading.

2. Those in “writefds” will be watched to see if a write will not block (not used there)

3. Those in “exceptfds” will be watched for exceptions (not used there).

On exit, the sets are modified in place to indicate which descriptors actually changed
status.

Four macros are provided to manipulate the sets:

• FD_ZERO will clear a set.

• FD_SET and FD_CLR add or remove a given descriptor from a set.

• FD_ISSET tests to see if a descriptor is part of the set. This is useful after select
returns.

“n” is the highest-numbered descriptor in any of the three sets, plus 1.

“timeout” is an upper limit on the amount of time elapsed before select returns. It may
be zero, causing select to return immediately. If timeout is NULL (no timeout),
select can block indefinitely.

Return Values On success, select returns the number of descriptors contained in the descriptor sets,
which may be zero if the timeout expires before an event occurs. On error, -1 is
returned, and errno is set appropriately, the sets and timeout become undefined, there-
fore their contents are not to be relied upon after an error.

Example fd_set rfds;

struct timeval tv;

int retval;

/* initialize file descriptor list */

FD_ZERO(&rfds);

FD_SET(df, &rfds);

/* define delay */

tv.tv_sec = 0;

tv.tv_usec = 5000;

retval = select(df+1, &rfds, NULL, NULL, &tv); /* df supposed to be a file
descriptor related to /dev/g711encoder0 */

if (retval > 0)
29
2663A–INTAP–07/02

printf("G.711 frame received.\n");

else

printf("G.711 frame not received within 5 ms.\n");

This code checks if a G.711 frame has been received. The time-out is 5 ms.

IOCTL Method

Synopsis #include <sys/ioctl.h>

int ioctl(int fd, int request, char *argp);

Description The ioctl() function manipulates the underlying device parameters of the G.711 encoder
device.

“fd” is the file descriptor upon which ioctl() will act. It should be related to the
/dev/g711encoder0 virtual file.

“request” defines which predefined command to send to the G.711 encoder device.
Some commands may require additional arguments which are stored or received in the
buffer pointed to by argp.

The ioctl() requests supported by the G.711 device driver are described below:

• REC_CONFIG: This command is used to configure the encoding operation of the
multiway driver with the G.711 payload. This must be done before performing any
other operation on the device. An additional parameter is used as defined below:
int payload;

This selects PCMU or PCMA.

The valid values to be written are those defined in the section “Low Level Interface” on
page 5. This should be done before any other operation is performed on the device if
default values are not appropriate.

• START_RECORD: This command is used to start the G.711 encoding operation.
There is no additional argument.

• STOP_RECORD: This command is used to stop the G.711 encoding operation.
There is no additional argument.

• ECHOCANCEL_START: This command is used to start the echo cancelling
operation. There is no additional argument.

• ECHOCANCEL_STOP: This command is used to stop the echo cancelling
operation. There is no additional argument.

• OAKMEM_ACCESS: This command is used to read/write the memory space of the
OAK, either program or data. It should be used with caution, (primarily for OAK
debug). An additional parameter is used as defined below:
struct oakmem_args {

unsigned short command;

unsigned short address;

unsigned short length;

unsigned short data[29];

};

The fields and the values to be written are those defined in the section: “Oak Memory
Access” on page 8.

Example #define PCMA 8

ioctl(g711, G711_CONFIG, PCMA);
30 AT75C1212
2663A–INTAP–07/02

AT75C1212
This configures the encoding channel with PCMA payload.

G711 decoder Driver
Operations

The g711 decoder driver redefines the following file manipulation functions:

• int open(const char *path, int flags, mode_t mode);

• int write(int fd, void *buf, int count);

• int select(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval
*timeout);

• int close(int fd);

Additionally, the ioctl function controls additional features of the AT75C1212 which are
not accessible with the other methods. These special commands are described below.
The prototype of the ioctl function is:

• int ioctl(int fd, int request, char *argp);

These methods apply to the four devices "/dev/g711decoderN" where N stands for
0,1,2,3. The four devices have the same MAJOR but have differing MINOR.

Open Method

Synopsis #include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open(const char *path, int flags);

Description One /dev/g711decoderN virtual file must be opened prior to any decoding operation on
corresponding G.711 decoder device driver. This is made with the open() method, the
same as for any regular file. The main operation performed by the open() method of the
device driver is to load and initialize the corresponding DSP software in the DSP
subsystem.

When this initialization is successful, the open system call converts the file “path” name
("/dev/g711decoder0" for example) into a file descriptor. This file descriptor is a non-
negative integer which will be used in subsequent I/O operations such as write, ioctl,
etc.

“flags” should be O_WRONLY which requests opening the file in write-only mode.

“flags” may also be bitwise-OR'd with O_NONBLOCK. In this case, neither the open nor
any subsequent operations on the file descriptor which is returned will cause the calling
process to wait.

Return values Open return the new file descriptor, or -1 if an error occurred. In the latter case, the glo-
bal variable errno is set appropriately to reflect the cause of error. Possible values of
errno are:

• ENODEV: This indicates that the underlying hardware does not exist or is not
supported. One reason can be a corruption of the binary DSP software which could
not be loaded into the DSP subsystem.

• EBUSY: The underlying hardware is busy. Most probably there is another process
using the same resource.

• ENOMEM: A memory allocation requested by the driver failed. This happens when
the system memory is full.

Example int fd = open("/dev/g711decoder0", O_WRONLY | O_NONBLOCK);
31
2663A–INTAP–07/02

This opens the G.711 decoder device driver in write mode, decode channel chosen is 0.
It selects non blocking I/O for write operations. The file descriptor is returned in “fd”. If
“fd” is positive, the G.711 decoder device 0 is readily available for write operations.

Close Method

Synopsis #include <unistd.h>

int close(int fd);

Description When the G.711 decoder device is no longer needed by the application, it can be closed
to release system resources. This is done through the close() method. The parameter is
the file descriptor of the file to be closed.

Return Values Close() returns 0 on success, or -1 if an error occurred. In the latter case the global vari-
able is set appropriately to reflect the cause of error. The only possible value for errno is
EBADF which means that “fd” is not a valid file descriptor.

Example
close(fd);

This closes the G.711 decoder device.

Write Method

Synopsis #include <unistd.h>

int write(int fd, void *buf, int count);

Description As for any file descriptor, the write method attempts to write “count” bytes from the buffer
starting at “buf” to the file descriptor “fd”. When “fd” is a file descriptor attached to
/dev/g711decoderN, the bytes written correspond to the G.711 frames which are to be
emitted by the G.711 decoder device.

Both blocking and non-blocking writes are supported. In blocking mode, write() will
return only when the G.711 decoder device is ready to accept data. Although the pro-
cess is blocked, it is safely put on a system wait queue and does not consume CPU
time.

In non-blocking mode, the write function returns immediately even if no data is available.
In this case the return value is -1 and errno is set to EAGAIN. Most often, the application
will retry to write as far as the entire data is transferred.

Return Values On success, the number of bytes written is returned. This corresponds to the number of
G.711 bytes actually emitted. It is not an error if this number is smaller than the number
of bytes requested. This may happen, for example, because fewer bytes are actually
acceptable at that moment due to lack of memory, or because write was interrupted by a
signal.

On error, -1 is returned and errno is set appropriately. Possible values for errno follow:

• EAGAIN: Non-blocking I/O has been selected using O_NONBLOCK and no data
was immediately available.

• EBADF: “fd” is not a valid descriptor.

• EINVAL: the /dev/g711decoderN file was not opened for writing.

• EFAULT: “buf” is outside the accessible address space.

Example ret = write(fd,buf,256);
32 AT75C1212
2663A–INTAP–07/02

AT75C1212
This writes at most 256 bytes to file descriptor “fd” (assumed here to be related to one
/dev/g711decoderN), from the memory location pointed to by “buf”.

Select Method

Synopsis #include <sys/time.h>

#include <sys/types.h>

#include <unistd.h>

int select(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
struct timeval *timeout);

Description Select waits for a number of file descriptors to change status. The main usage of select
is to check if data (G.711 frames) are available for writing without having to actually write
the data. In particular, when blocking operation is selected, it indicates if a write access
will block or not. This is similar to a polling operation.

Three independent sets of descriptors are watched:

1. Those listed in “readfds” (not used there) will be watched to see if characters
become available for reading.

2. Those in “writefds” will be watched to see if a write will not block.

3. Those in “exceptfds” will be watched for exceptions (not used there).

On exit, the sets are modified in place to indicate which descriptors actually changed
status.

Four macros are provided to manipulate the sets.

• FD_ZERO will clear a set.

• FD_SET and FD_CLR add or remove a given descriptor from a set.

• FD_ISSET tests to see if a descriptor is part of the set. This is useful after select
returns.

“n” is the highest-numbered descriptor in any of the three sets, plus 1.

“timeout” is an upper limit on the amount of time elapsed before select returns. It may
be zero, causing select to return immediately. If timeout is NULL (no timeout),
select can block indefinitely.

Return Values On success, select() returns the number of descriptors contained in the descriptor sets,
which may be zero if the timeout expires before an event occurs. On error, -1 is
returned, and errno is set appropriately, the sets and timeout become undefined, there-
fore their contents are not to be relied upon after an error.

Example fd_set wfds;

struct timeval tv;

int retval;

/* initialize file descriptor list */

FD_ZERO(&wfds);

FD_SET(df, &wfds);

/* define delay */

tv.tv_sec = 0;

tv.tv_usec = 5000;

retval = select(df+1, NULL, &wfds, NULL, &tv); /* df supposed to be a file
descriptor related to /dev/g711decoderN */

if (retval > 0)
33
2663A–INTAP–07/02

printf("G.711 frame requested by DSP.\n");

else

printf("No G.711 frame requested within 5 ms.\n");

This code checks if a G.711 frame is requested by the DSP. The time-out is 5 ms.

IOCTL Method

Synopsis #include <sys/ioctl.h>

int ioctl(int fd, int request, char *argp);

Description The ioctl function manipulates the underlying device parameters of the G.711 decoder
devices.

“fd” is the file descriptor upon which ioctl will act. It is related to the /dev/g711decoderN
virtual file.

“request” defines which predefined command to send to the G.711 decoder device.
Some commands may require additional arguments which are stored or received in the
buffer pointed to by “argp”. The ioctl requests supported by the G.711 decoder device
driver are described below:

• DEC_CONFIG: This command is used to configure the decoding operation of the
multiway driver with G.711 payload. An additional parameter is used as defined
below:
int payload; //

This selects PCMU or PCMA

The valid values to be written are those defined in the section “Low Level Interface” on
page 5. This must be done before any other operation is performed on the device.

• START_DECODE: This command is used to start the G.711 decoding operation.
There is no additional argument.

• STOP_ DECODE: This command is used to stop the G.711 decoding operation.
There is no additional argument.

• OAKMEM_ACCESS: This command is used to read/write the memory space of the
OAK, either program or data. It should be used with caution, (primarily for OAK
debug). An additional parameter is used as defined below:
struct oakmem_args {

unsigned short command;

unsigned short address;

unsigned short length;

unsigned short data[29];

};

The fields and the values to be written are those defined in the section: “Oak Memory
Access” on page 8.

Example #define PCMU 0

ioctl(fd, DEC_CONFIG, PCMU);

Assume that “fd” is referring to /dev/g711decoder2. This configures decoding channel 2
with PCMU payload.

Tones & DTMF Driver
Operations

The tones driver redefines the following file manipulation functions:

• int open(const char *path, int flags, mode_t mode);
34 AT75C1212
2663A–INTAP–07/02

AT75C1212
• int read(int fd, void *buf, int count);

• int select(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval
*timeout);

• int close(int fd);

Additionally, the ioctl() function controls additional features of the AT75C1212 which are
not accessible with the other methods. These special commands are described below.

The prototype of the ioctl function is:

• int ioctl(int fd, int request, char *argp);

Open Method

Synopsis #include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open(const char *path, int flags);

Description The /dev/tones virtual file must be opened prior to any operation on the tones device
driver. This is made with the open() method, the same as for any regular file. The main
operation performed by the open() method of the device driver is to load and initialize
the corresponding DSP software in the DSP subsystem.

When this initialization is successful, the open system call converts the file “path” name
("/dev/tones" in this case) into a file descriptor. This file descriptor is a non-negative inte-
ger which will be used in subsequent I/O as with read, ioctl, etc.

“flags” should be O_RDONLY which request opening the file in read-only mode.

“flags” may also be bitwise-or'd with O_NONBLOCK. In this case, neither the open nor
any subsequent operations on the file descriptor which is returned will cause the calling
process to wait.

Return values Open return the new file descriptor, or -1 if an error occurred. In the latter case, the glo-
bal variable errno is set appropriately to reflect the cause of error. Possible values of
errno are:

• ENODEV: This indicates that the underlying hardware does not exist or is not
supported. One reason can be a corruption of the binary DSP software which could
not be loaded into the DSP subsystem.

• EBUSY: The underlying hardware is busy. Most probably there is another process
using the same resource.

• ENOMEM: A memory allocation requested by the driver failed. This happens when
the system memory is full.

Example int fd = open("/dev/tones", O_RDONLY | O_NONBLOCK);

This opens the tones device driver in read mode. It selects non blocking I/O for read
operations. The file descriptor is returned in “fd”. If “fd” is positive, the tones device is
readily available for read operations.

Close Method

Synopsis #include <unistd.h>

int close(int fd);
35
2663A–INTAP–07/02

Description When the tones device is no longer needed by the application, it can be closed to
release system resources. This is done through the close() method. The parameter is
the file descriptor of the file to be closed.

Return Values Close returns 0 on success, or -1 if an error occurred. In the latter case the global vari-
able is set appropriately to reflect the cause of error. The only possible value for errno is
EBADF which means that “fd” is not a valid file descriptor.

Example close(fd);

This closes the tones device.

Read Method

Synopsis #include <unistd.h>

int read(int fd, void *buf, int count);

Description As for any file descriptor, the read() method attempts to read “count” bytes from “fd” into
the buffer starting at “buf”. When “fd” is a file descriptor attached to /dev/tones, the bytes
read correspond to either DTMF digits, if DTMF detection has been activated, or a
tone_generation_done code, if TONE generation has been activated. The mapping
between the value of each byte and the DTMF digit is as follows:

Byte value of tone_generation_done = 0xBA

Both blocking and non-blocking reads are supported. In blocking mode, read will return
only when there are tones valid frames available to read. Although the process is
blocked, it is safely put on a system wait queue and does not consume CPU time.

In non-blocking mode, the read function returns immediately even if no data is available.
In this case the return value is -1 and errno is set to EAGAIN.

Return Values On success, the number of bytes read is returned. It is not an error if this number is
smaller than the number of bytes requested. This may happen, for example, because
fewer bytes are actually available at that moment, or because read was interrupted by a
signal.

On error, -1 is returned and errno is set appropriately. Possible values for errno follow:

• EAGAIN: non-blocking I/O has been selected using O_NONBLOCK and no data
was immediately available.

• EBADF: “fd” is not a valid descriptor.

Table 35. DTMF Digit and Byte Value Map

Byte Value DTMF Digit Byte Value DTMF Digit

0x01 '1’ 0x09 '9'

0x02 '2’ 0x0A '0'

0x03 '3’ 0x0B '*'

0x04 '4’ 0x0C '#'

0x05 '5’ 0x0D 'A'

0x06 '6’ 0x0E 'B'

0x07 '7’ 0x0F 'C'

0x08 '8’ 0x00 'D'
36 AT75C1212
2663A–INTAP–07/02

AT75C1212
• EINVAL: the /dev/tones file was not open for reading.

• EFAULT: “buf” is outside the accessible address space.

Example ret = read(fd,buf,256);

This reads at most 256 bytes from file descriptor “fd” (assumed here to be related to
/dev/tones), and stores them into the memory location pointed to by “buf”.

Select Method

Synopsis #include <sys/time.h>

#include <sys/types.h>

#include <unistd.h>

int select(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
struct timeval *timeout);

Description Select waits for a number of file descriptors to change status. The main usage of select()
is to check if data (DTMF digits or tone_generation_done code) are available for reading
without having to actually read the data. In particular, when blocking operation is
selected, it allows to know if a read access will block or not. This is similar to a polling
operation.

Three independent sets of descriptors are watched.

1. Those listed in “readfds” will be watched to see if characters become available
for reading.

2. Those in “writefds” will be watched to see if a write will not block (not used there),

3. Those in “exceptfds” will be watched for exceptions (not used there).

On exit, the sets are modified in place to indicate which descriptors actually changed
status.

Four macros are provided to manipulate the sets.

• FD_ZERO will clear a set.

• FD_SET and FD_CLR add or remove a given descriptor from a set.

• FD_ISSET tests to see if a descriptor is part of the set. This is useful after select
returns.

“n” is the highest-numbered descriptor in any of the three sets, plus 1.

“timeout” is an upper limit on the amount of time elapsed before select returns. It may
be zero, causing select to return immediately. If timeout is NULL (no timeout),
select can block indefinitely.

Return Values On success, select returns the number of descriptors contained in the descriptor sets,
which may be zero if the timeout expires before an event occurs. On error, -1 is
returned, and errno is set appropriately, the sets and timeout become undefined, there-
fore their contents are not to be relied upon after an error.

Example fd_set rfds;

struct timeval tv;

int retval;

/* initialize file descriptor list */

FD_ZERO(&rfds);

FD_SET(df, &rfds);
37
2663A–INTAP–07/02

/* define delay */

tv.tv_sec = 5;

tv.tv_usec = 0;

retval = select(df+1, &rfds, NULL, NULL, &tv); //df supposed to be a file
descriptor related to /dev/tones

if (retval > 0)

printf("DTMF digit detected.\n");

else

printf("No DTMF digit detected within 5 s.\n");

This code checks if a DTMF digit has been detected. The time-out is 5 ms.

Ioctl Method

Synopsis #include <sys/ioctl.h>

int ioctl(int fd, int request, char *argp);

Description The ioctl() function manipulates the underlying device parameters of the tones device.

“fd” is the file descriptor upon which ioctl() will act. It should be related to the /dev/tones
virtual file.

“request” defines which predefined command to send to the tones device. Some com-
mands may require additional arguments which are stored or received in the buffer
pointed to by “argp”. The ioct() requests supported by the tones device driver are
described below:

• DTMFDET_CONFIG: This command is used to configure the characteristics of the
DTMF detector. An additional parameter is used as defined below:
struct dtmfdet_args{

unsigned short lowthres;

unsigned short highthres;

unsigned short lowrel;

unsigned short highrel;

unsigned short postwist;

unsigned short negtwist;

unsigned short duration;

unsigned short silence;

};

The fields and the values to be written are those defined in the section “Low Level Inter-
face” on page 5.

• DTMFDET_START: This command is sent to start the DTMF detection immediately.
There is no additional argument.

• DTMFDET_STOP: This command is sent to stop the DTMF detection immediately.
There is no additional argument.

• TONEGEN_CONFIG: This command is used to configure the characteristics of the
arbitrary tone signals. An additional parameter is used as defined below:
struct tonegen_args{

unsigned short cosw1;

unsigned short sinw1;

unsigned short lev1;
unsigned short cosw2;

unsigned short sinw2;
38 AT75C1212
2663A–INTAP–07/02

AT75C1212
unsigned short lev2;

unsigned short signal_len;

unsigned short silence_len;

unsigned short start;

};

The fields and the values to be written are those defined in the section “Request Notifi-
cation Messages” on page 9.

• TONEGEN_START: This command is sent to start the generation of a tone
immediately. There is no additional argument.

• TONEGEN_STOP: This command is sent to stop the generation of a tone
immediately. There is no additional argument.

• ECHOCANCEL_CONFIG: This command is used to configure the characteristics of
the echo canceller algorithm. An additional parameter is used as defined below:
struct echocancel_args {

unsigned short echo_size;

unsigned short echo_update;

unsigned short echo_stepsz;

unsigned short echo_timeconst;

unsigned short echo_mucalc;

};

• The fields and the values to be written are those defined in the “Request Notification
Messages” section of this document. This should be done before any other kind of
operation on the device if default values do not suit.

• ECHOCANCEL_START: This command is used to start the echo cancelling
operation. There is no additional argument.

• ECHOCANCEL_STOP: This command is used to stop the echo cancelling
operation. There is no additional argument.

• OAKMEM_ACCESS: This command is used to read/write the memory space of the
OAK, either program or data. It should be carefully used, mainly for OAK debug
purpose. An additional parameter is used as defined below:
struct oakmem_args {

unsigned short command;

unsigned short address;

unsigned short length;

unsigned short data[29];

};

The fields and the values to be written are those defined in the section:“Oak Memory
Access” on page 8.

Example struct tonegen_args{

unsigned short cosw1;

unsigned short sinw1;

unsigned short lev1;

unsigned short cosw2;

unsigned short sinw2;

unsigned short lev2;

unsigned short signal_len;

unsigned short silence_len;

unsigned short start;
39
2663A–INTAP–07/02

}* tone_args;

// 1st frequency component

tone_args-> cosw1 = 0x5a82; // 1kHz tone

tone_args-> sinw1 = 0x5a83; //

tone_args-> lev1 = 0x4000; // -6dB under full scale reference

// 2nd frequency component not used here

tone_args-> cosw2 = 0;

tone_args-> sinw2 = 0;

tone_args-> lev1 = 0;

tone_args-> signal_len = 500; // milliseconds

tone_args-> silence_len = 500; // milliseconds

tone_args-> start = 2; // wait for tone start request, single tone is
generated

ioctl(fd, TONEGEN_CONFIG, tone_args);

This configures the arbitrary tone characteristics for an usual operation.
40 AT75C1212
2663A–INTAP–07/02

Printed on recycled paper.

© Atmel Corporation 2002.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

2663A–INTAP–07/02 0M

ATMEL® is the registered trademark of Atmel; SIAP™ is the trademark of Atmel.

ARM® and ARM7TDMI® are registered trademarks of ARM Ltd.; OakDSPCore® is a registered trademark of
DSP Group Inc.; uClinux® is the registered trademark of Lineo Inc. Other terms and product names may be the
trademarks of others.

	Features
	Overview
	Functional Description
	G.723.1 Dual Rate Vocoder
	VAD/CNG
	G.711 µ-law and A-law Voice Compression
	Echo Cancellation Operation
	Multi-way Conferencing
	DTMF Detector
	Tone Generator

	Low Level Interface
	Voice Module Upload
	Upload Process
	Binary Image Format

	Dual-port Mail Box Configuration
	Mailbox Access
	ARM-to-Oak Mailboxes
	Oak-to-ARM Mailboxes

	Mailbox Usage
	Mailbox 0: RX Encoded Voice Data
	Mailbox 1 to 4: TX Encoded Voice Data
	Mailbox 5: Oak Memory Access
	Mailbox 6: Request Notification
	Mailbox 7: Status Notification

	TX/RX Encoded Voice Data
	Oak Memory Access
	Request Notification Messages
	Decoding Configuration Request
	Encoding Configuration Request
	Volume Configuration Request
	Volume Up Request
	Volume Down Request
	G.723.1 Configuration Request
	Echo Cancellation Configuration Request
	Echo Cancellation Step-size Adjust Request
	Start Decoding Request
	Stop Decoding Request
	Start Record Request
	Stop Record Request
	Start Echo Cancellation Request
	Stop Echo Cancellation Request
	DTMF Detection Configuration Request
	DTMF Detection Start Request
	DTMF Detection Stop Request
	Tone Generation Configuration Request
	Tone Generation Start Request
	Tone Generation Stop Request

	Status Notification Messages
	AT75C1212 Module Initialization Status
	Bad Format Status
	Unknown Request Status
	Bad Parameter Status
	G.723.1 Encoding Stopped Status Message
	G.711 Encoding Stopped Status Message
	G.723.1 Decoding Stop Status Message
	G.711 Decoding Stop Status Message
	DTMF Detection Status
	Tone Generation Status

	AT75C1212 Device Driver
	AT75C1212 Device Driver Overview
	G723.1 Encoder Driver Operations
	Open Method
	Synopsis
	Description
	Return Values
	Example

	Close Method
	Synopsis
	Description
	Return Values
	Example

	Read Method
	Synopsis
	Description
	Return Values
	Example

	Select Method
	Synopsis
	Description
	Return Values
	Example

	IOCTL Method
	Synopsis
	Description
	Example

	G723.1 Decoder Driver Operations
	Open Method
	Synopsis
	Description
	Return Values
	Example

	Close Method
	Synopsis
	Description
	Return Values
	Example

	Write Method
	Synopsis
	Description
	Return Values
	Example

	Select Method
	Synopsis
	Description
	Return
	Example

	IOCTL Method
	Synopsis
	Description
	Example

	G.711 Encoder Driver Operations
	Open Method
	Synopsis
	Description
	Return Values
	Example

	Close Method
	Synopsis
	Description
	Return Values
	Example

	Read Method
	Synopsis
	Description
	Return Values
	Example

	Select Method
	Synopsis
	Description
	Return Values
	Example

	IOCTL Method
	Synopsis
	Description
	Example

	G711 decoder Driver Operations
	Open Method
	Synopsis
	Description
	Return values
	Example

	Close Method
	Synopsis
	Description
	Return Values

	Write Method
	Synopsis
	Description
	Return Values
	Example

	Select Method
	Synopsis
	Description
	Return Values
	Example

	IOCTL Method
	Synopsis
	Description
	Example

	Tones & DTMF Driver Operations
	Open Method
	Synopsis
	Description
	Return values
	Example

	Close Method
	Synopsis
	Description
	Return Values
	Example

	Read Method
	Synopsis
	Description
	Return Values
	Example

	Select Method
	Synopsis
	Description
	Return Values
	Example

	Ioctl Method
	Synopsis
	Description
	Example

