Features

- Frequency Range 4.9 GHz to 5.4 GHz
- Linear P_{OUT} Typically 18 dBm
- · Gain Typically 17 dB
- V_{CC} 3.1 V to 3.5 V
- Package: QFN 16

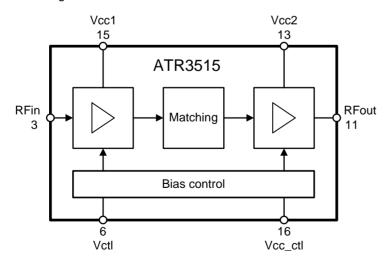
Benefits

- Biasing Control Extends Battery Life Time
- AC Input and Output Coupling Saves External Capacitors
- Output Matching Requires Only One External Inductor
- Very Suitable for PCMCIA Cards Type 1 (Thickness 3.3 mm)

Electrostatic sensitive device.

Observe precautions for handling.

Description


Process

The 5-GHz power amplifier is designed in Atmel's Silicon-Germanium (SiGe) process and provides excellent noise performance as well as good power-added efficiency.

Circuitry

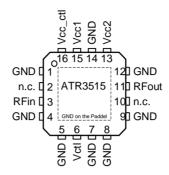
The PA consists of a 2-stage amplifier with a linear output power of 18 dBm. The output stage was realized using an open-collector structure. The IC features $50-\Omega$ input matching. Power-up/down and output level are controlled at bias control Pin 6 (Vctl).

Figure 1. Block Diagram

5-GHz WLAN Power Amplifier for 802.11a

ATR3515

Preliminary



Pin Configuration

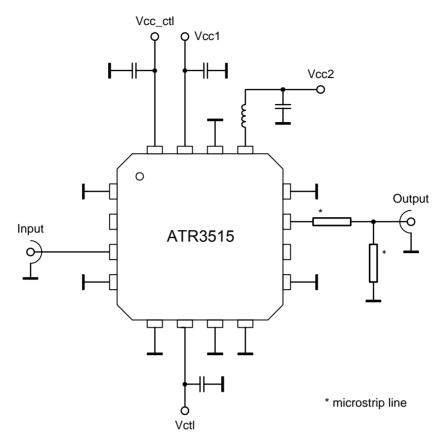
Figure 2. Pinning QFN 16

Pin Description

Pin	Symbol	Function
1	GND	Ground
2	n.c.	Not connected
3	RFin	RF input
4	GND	Ground
5	GND	Ground
6	Vctl	Power-up/biasing control voltage
7	GND	Ground
8	GND	Ground
9	GND	Ground
10	n.c.	Not connected
11	RFout	RF output
12	GND	Ground
13	Vcc2	Supply voltage for PA stage
14	GND	Ground
15	Vcc1	Supply voltage for driver stage
16	Vcc_ctl	Supply voltage for biasing control
Paddel	_	Ground

Electrical Characteristics

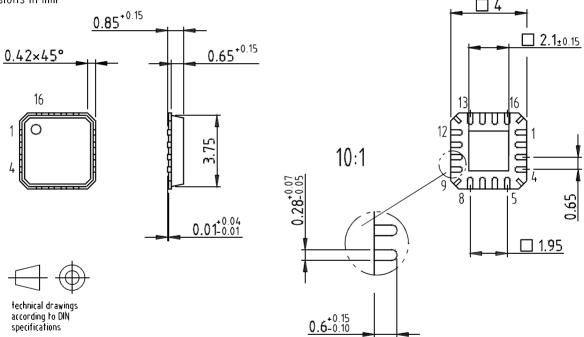
 $V_{CC} = 3.3 \text{ V}, T_{amb} = 25^{\circ}\text{C}, \text{ unless otherwise specified}$


Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Frequency range		f	4900		5400	MHz
Ambient temperature range		T _{amb}	-25		75	°C
Supply voltage		V _{CC}	3.1	3.3	3.5	V
Linear output power	Single tone signal	P _{lin}		18		dBm
P1dB output power	Single tone signal	P1dB		23		dBm
Control voltage range	PA operating mode	V _{ctl}	1.5		1.9	V
	Power down	V _{ctl}			0.2	V
Turn on/off time	`ON' is the time that ICC returns to normal and `OFF' is the time the current needs to decrease to 10% of normal mode.	t _{on/off}		500	600	ns
Input and output return loss	With external matching			-12	-8	dB
Spectrum mask (1)	at ±11 MHz offset from carrier				-22	dBr
	at ±20 MHz offset from carrier				-30	dBr
	at ±30 MHz offset from carrier				-42	dBr
Error Vector Magnitude (1)		EVM		2		%
Reverse isolation		ISO _r	30	33		dB
Output power saturation	for reference	P _{sat}		24		dBm
Power added efficiency	at operation point for 18 dBm output power (2)	PAE		12		%
Current consumptoin	at operation point for 18 dBm output power (3)	I _{cc}		160	200	mA
Gain linear		G _I		17		dB
Gain deviation	Within 200 MHz frequency band	G _d	-1,5		+1.5	dB

- Notes: 1. OFDM signal according to 802.11a spec with Pout = 18 dBm at 54 Mbps.
 - 2. Due to the linearity requirements in an OFDM system, the power amplifier operates in the linear mode of class-A.
 - 3. The current consumption of the PA can be controlled by the Pin Vctl. For lower output power demand, the current can be reduced, while the power gain remains nearly constant.

Figure 3. Application Circuit

Ordering Information


Extended Type Number	Package	Remarks
ATR3515-PES	QFN 16	Tube, MOQ 750
ATR3515-PEQ	QFN 16	Taped and reeled, MOQ 6000

Package Information

Package: QFN 16 - 4x4 Exposed pad 2.1x2.1

(acc. JEDEC OUTLINE No. MO-220)

Dimensions in mm

Drawing-No: 6.543-5076.01-4

Issue: 3; 24.01.03 Assembly Amkor

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743

RF/Automotive

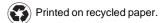
Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

e-mail literature@atmel.com


Web Site http://www.atmel.com

© Atmel Corporation 2003.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Atmel® is the registered trademark of Atmel.

Other terms and product names may be the trademarks of others.

