
1

AVR910: In-System Programming

Features
• Program any AVR MCU In-System
• Reprogram both data Flash and

parameter EEPROM memories
• Eliminate sockets
• Simple 3-wire SPI programming

interface

Introduction
In-System programming allows program-
ming of any AVR MCU positioned inside
the end system. Using a simple 3-wire
SPI interface, the In-System program-
mer communicates serially with the AVR
MCU, reprogramming all non-volatile
memory on the chip.

In-System programming eliminates the
physical removal of chips from the sys-
tem. This will save time, and money,
both during development in the lab, and
when updating the software or parame-
ters in the field.

This application note shows how to
design the system to support In-System
programming. It also shows how a low
cost In-System programmer can be
made, that will allow the target AVR
MCU to be programmed from any PC
equipped with a regular 9-pin serial port.

The Programming
Interface
For In-System programming, the pro-
grammer is connected to the target
using as few wires as possible. To pro-
gram any AVR MCU in any target sys-
tem, a simple 6-wire interface is used to
connect the programmer to the target
PCB. Figure 1 below shows the connec-
tions needed.

Figure 1. 6-wire connection between programmer and target system.

The Serial Peripheral Interface (SPI)
interface consist of the three wires Serial
ClocK (SCK), Master In - Slave Out
(MISO) and Master Out - Slave In
(MOSI). When programming the AVR,
the In-System programmer always oper-
ate as the master, and the target system
always operate as the slave.

The In-System programmer (master)
provides the clock for the communication

on the SCK line. Each pulse on the SCK
line transfers one bit from the program-
mer (master) to the target (slave) on the
Master Out - Slave In (MOSI) line. Simul-
taneously, each pulse on the SCK line
transfers one bit from the target (slave)
to the programmer (master) on the Mas-
ter In - Slave Out (MISO) line.

PC 9-PIN
SERIAL PORT

IN-SYSTEM
PROGRAMMER

TARGET AVR MCU
AT90SXXXX

VCC
RESET
MISO
MOSI
SCK

VCC
RES

MISO
MOSI
SCK

GND

TXD
RXD
GND

TXD
RXD
GND

8-Bit
Microcontroller

Application
Note

AVR910

0943B-B–10/97

AVR9102

To assure proper communication on the three SPI lines, it
is necessary to connect ground on the programmer to
ground on the target (GND).

To enter and stay in serial programming mode, the AVR
MCU reset has to be kept active (low). Also, to perform a
chip erase, the reset has to be pulsed to end the chip erase
cycle. To ease the programming task, it is preferred to let
the programmer take control of the target MCU reset line to
automate this process using a fourth control line. (RES)

To allow programming of targets running at any allowed
voltage (2.7 - 6.0 V), the programmer can draw power from
the target system (VCC). This eliminate the need for a sepa-
rate power supply for the programmer. Alternatively, the
target system can be supplied from the programmer at pro-
gramming time, eliminating the need to power the target
system through its regular power connector for the duration
of the programming cycle.

Figure 2. The Recommended In-System Programming
Interface Connector Layout.

Figure 2 shows the connector used by all Atmel In-System
programmers to connect to the target system. The standard
connector supplied is a 2x3 pin header contact, with pin
spacing of 100 mils.

Hardware Design Considerations
To allow In-System programming of the AVR MCU, the
pins of the target MCU need to be released by the target
system on request. This chapter describes the details of
each pin used for the programming operation.

GND
The In-System programmer and target system need to
operate with the same reference voltage. This is done by
connecting ground of the target to ground of the program-
mer. No special considerations apply to this pin.

RESET
The target AVR MCU will enter serial programming mode
only when its reset line is active (low). When erasing the
chip, the reset line has to be toggled to end the erase cycle.
To simplify this operation, it is recommended that the target
reset can be controlled by the In-System programmer.

Immediately after RESET has gone active, the In-System
programmer will start to communicate on the three dedi-
cated SPI wires SCK, MISO and MOSI. To avoid driver
contention, active reset must immediately disable any chip
driving these lines from the target system. Note that the
AVR MCU will automatically set all its I/O pins to inputs,
with pull-ups disabled, when RESET is active.

To avoid problems, the In-System programmer should be
able to keep the entire target system reset for the duration
of the programming cycle. The target system should never
attempt to drive the three SPI lines while reset is active.

If using the In-System programmer to control the reset of
the target system is impossible, the reset can be controlled
manually. The programmer would have to request the oper-
ator to apply reset when this is required. The operation will
be handled safer and faster if the In-System programmer is
allowed to read the target AVR reset line to verify the user
performs the requested tasks. With a change in software,
the programmers supplied from Atmel can support this lack
of reset control. However, this method is not recom-
mended.

Table 1. Connections required for In-System programming

Pin Name Comment

SCK Shift ClocK Programming clock, generated by the In-System programmer (master)

MOSI Master Out - Slave In Communication line from In-System programmer (master) to target AVR being
programmed (slave)

MISO Master In - Slave Out Communication line from target AVR (slave) to In-System programmer (master)

GND Common Ground The two systems must share the same common ground.

RES Target AVR MCU Reset To enable In-System programming, the target AVR reset must be kept active. To simplify
this, the In-System programmer should control the target AVR reset.

VCC Target Power To allow simple programming of targets operating at any voltage, the In-System
programmer can draw power from the target. Alternatively, the target can have power
supplied power through the In-System programming connector for the duration of the
programming cycle.

1

3

5

4

6

2 VCC

MOSI

GND

MISO

SCK

RESET

AVR910

3

SCK
When programming the AVR in serial mode, the In-System
programmer supplies clock information on the SCK pin.
This pin is always driven by the programmer, and the target
system should never attempt to drive this wire when target
reset is active. Immediately after the RESET goes active,
this pin will be driven to zero by the programmer. During
this first phase of the programming cycle, keeping the SCK
line free from pulses is critical, as pulses will cause the tar-
get AVR to loose synchronization with the programmer.
When synchronization is lost, the only means of regaining
synchronization is to release the RESET line for more than
100 ms.

The target AVR MCU will always set up its SCK pin to be
an input with no pull-up whenever RESET is active. See
also the description of the RESET wire.

The minimum low and high periods for the serial clock
(SCK) input are defined as follows:

Low: >1 XTAL1 clock cycle

High: >4 XTAL1 clock cycles

MOSI
When programming the AVR in serial mode, the In-System
programmer supplies data to the target on the MOSI pin.
This pin is always driven by the programmer, and the target
system should never attempt to drive this wire when target
reset is active.

The target AVR MCU will always set up its MOSI pin to be
an input with no pull-up whenever RESET is active. See
also the description of the RESET wire.

MISO
When reset is applied to the target AVR MCU, the MISO
pin is set up to be an input with no pull-up. Only after the
“Programming Enable” command has been correctly trans-
mitted to the target will the target AVR MCU set its MISO
pin to become an output. During this first time, the In-Sys-
tem programmer will apply its pull-up to keep the MISO line
stable until it is driven by the target MCU.

VCC
When programming the target MCU, the programmer out-
puts need to stay within the ranges specified in the DC
Characteristics.

To easily adapt to any target voltage, the programmer can
draw all power required from the target system. This is
allowed as the In-System programmer will draw very little
power from the target system, typically no more than
20mA. The programmer supplied from Atmel operate in this
mode.

As an alternative, the target system can have its power
supplied from the programmer through the same connector
used for the communication. This would allow the target to
be programmed without applying power to the target exter-
nally.

Table 2. Recommendations when Designing Hardware Supporting In-System Programming

Pin Recommendation

GND Connect ground of the target to ground of the In-System programmer

RESET Allow the In-System programmer to reset the target system

SCK When the target AVR MCU is reset is active, this line should never be driven by the target system. Edges on this
line after RESET is pulled low will be critical, and cause the target AVR MCU to loose synchronization with
the programmer. When programming, oscillations on this pin should be tolerated by the surrounding system when
the AVR reset is active.

MOSI When the target AVR MCU is reset is active, this line should never be driven by the target system. When
programming, oscillations on this pin should be tolerated by the surrounding system when the AVR reset is active.

MISO When the target AVR MCU is reset is active, this line should be allowed to become an output. When programming,
oscillations on this pin should be tolerated by the surrounding system when the AVR reset is active.

VCC Allow the In-System programmer to draw power from the target system, to adapt to any allowed target voltage. The
maximum current needed to power the programmer will wary depending on the programmer being used.

AVR9104

Programming Protocol
Immediately after RESET goes active on the target AVR
MCU, the chip is ready to enter programming mode. The
internal Serial Peripheral Interface (SPI) is activated, and is
ready to accept instructions from the programmer. It is
very important to keep the SCK pin stable, as one sin-
gle edge will cause the target to loose synchronization
with the programmer. After pulling reset low, wait at least
20 ms before issuing the first command.

COMMAND FORMAT
All commands have a common format, always built from
four bytes. The first byte contains the command code,
selecting operation and target memory. The second and
third byte contains the address of the selected memory
area. The fourth byte contains the data, going in either
direction.

The data returned from the target is usually the data sent in
the previous byte. Table 3 shows an example, where two
consecutive commands are sent to the target. Notice how
all bytes returned equal the bytes just received. Some com-

mands return one byte from the target's memory. This byte
is always returned in the last byte (byte 4). Data is always
sent on MOSI and MISO lines with most significant bit
(MSB) first.

Note: a = address high bits
b = address low bits
H = 0 - Low byte, 1 - High Byte
o = data out
i = data in
x = don't care
1 = lock bit 1
2 = lock bit 2

ENABLE MEMORY ACCESS
When the RESET pin is first pulled active, the only instruc-
tion accepted by the SPI interface is a “Programming
Enable”. Only this command will open for access to the
Flash and EEPROM memories, and without this access,
any other command issued will be ignored. Table 3 above
shows an example where memory access is enabled in the
first command sent to the chip.

After a “Programming Enable” command has been sent to
the target, access is given to the non-volatile memories of
the chip according to the current setting of the protecting
lock-bits.

Table 3. Example, Enabling Memory Access and Erasing the Chip

Action MOSI, Sent to target AVR MISO, Returned from target AVR

Programming Enable $9C 53 xx yy $zz 9C 53 xx

Read Device Code $1E at address $00 $30 nn 00 mm $yy 30 nn 1E

Table 4. Serial Programming Command Format

Instruction Instruction Format Operation

Byte 1 Byte 2 Byte 3 Byte4

Programming
Enable

1010 1100 0101 0011 xxxx xxxx xxxx xxxx Enable Serial Programming after RESET goes low

Chip Erase 1010 1100 100x xxxx xxxx xxxx xxxx xxxx Chip erase both Flash, EEPROM and lock-bits

Read Program
Flash Memory

0010 H000 0000 aaaa bbbb bbbb oooo oooo Read H(high or low) data o from Program memory
at word address a:b

Write Program
Flash Memory

0110 H000 0000 aaaa bbbb bbbb iiii iiii Write H(high or low) data i to Program memory at
word address a:b

Read EEPROM
Memory

1010 0000 0000 0000 bbbb bbbb oooo oooo Read data o from EEPROM memory at address b

Write EEPROM
Memory

1110 0000 0000 0000 bbbb bbbb iiii iiii Write data i to EEPROM memory at address b

Write Lock Bits 1010 1100 111x x 21x xxxx xxxx xxxx xxxx Write lock bits. Set bits 1,2=’0’ to program lock bits

Read Device
Code

0011 0000 xxxx xxxx 0000 00 bb oooo oooo Read Device Code o

AVR910

5

The target AVR MCU will not respond with an acknowledge
to the “Programming Enable” command. To check the com-
mand has been accepted by the target AVR MCU, we
could try to read the Device Code, also known as the signa-
ture bytes.

DEVICE CODE
After the “Programming Enable” command has been suc-
cessfully read by the SPI interface, the programmer can

read the Device Code, also known as the signature bytes.
The device code will identify the chip vendor (Atmel), the
part family (AVR), flash size in kB, and family member (ex.
AT90S1200). The “Read Device Code” command format is
found in Table 4: Serial Programming Command Format
Table 4 to be [$30, $XX, $adr, $code]. Valid addresses are
$0, $1 or $2. Table 5 shows what the expected result will
be

.

Table 6 indicates that device code will sometimes read as
$FF. If this happens, the part device code has not been
programmed into the device. This does not indicate an
error, but the part has to be manually identified to the pro-
grammer.

Device code $FF might also occur if there is no target
ready and the MISO line is constantly pulled high. The pro-
grammer can detect this situation by detecting that also
commands sent to the target is returned as $FF.

If the target reports Vendor Code $00, Part Family $01, and
Part Number $02, both lock bits have been set. This pre-
vents the memory blocks from responding, and the valued
returned will be the byte just received from the program-
mer, which just happens to be the current address. To
erase the lock-bits, it is necessary to perform a valid “Chip
Erase”.

Table 5. Allowed Device Codes

Address Code Valid Codes

$00 Vendor Code $1E indicates manufactured by Atmel
$00 indicates the device is locked, see below

$01 Part Family and Flash Size $90 indicates AVR with 1kB Flash memory
$91 indicates AVR with 2kB Flash memory
$92 indicates AVR with 4kB Flash memory
$93 indicates AVR with 8kB Flash memory

$02 Part Number Identifies the part, see Table 6 for details

Table 6. Part Number Identification Table

Part Family and Flash Size Part Number Part

$90 $01 AT90S1200

$92 $01 AT90S2313

$93 $01 AT90S4414

$94 $01 AT90S8515

$FF $FF Device Code Erased (or Target Missing)

$01 $02 Device Locked

Table 7. Example, Reading the Device Code from an AT90S1200, code $1E 90 01 expected

Action MOSI, Sent to target AVR MISO, Returned from target AVR

Read Vendor code at address $00 $30 xx 00 yy $zz 30 xx 1E

Read Part Fam. and mem size at $01 $30 nn 01 mm $yy 30 nn 90

Read Part Number at address $02 $30 xx 02 yy $mm 30 xx 01

AVR9106

FLASH PROGRAM MEMORY ACCESS
When the part has been identified, it is time to start access-
ing the Flash memory. Using the “Read Flash Program
Memory” command, Flash memory contents can be read
one byte at a time. The command sends a memory address
($0a bb) to select a 16-bit word, and selects low or high
byte with the H bit (0 is low, 1 is high byte). The byte stored
at this address is then returned from the target AVR MCU
in byte 4.

Usually, each 16-bit word in Flash contains one AVR
instruction. Assuming the instruction stored at address
$104 is 'add r16,r17', the op-code for this instruction would
be stored as $0F01. Reading address $104 serially, the
expected result returned in byte 4 will be $0F from the high
byte, and $01 from the low byte. The data on the MISO and
MOSI lines will look like shown in Table 8.

Flash memory is written with the “Write Program Flash
Memory”. The command sends a memory address ($0a
bb) to select a 16-bit word, and selects low or high byte
with the H bit (0 is low, 1 is high byte). The byte to be stored
is then sent to the target AVR MCU in byte 4.

Unlike parallel programming, there is no method to detect
when the Flash write cycle has ended. The programmer
should simply wait 4 ms before attempting to send another
command to the interface. If a command is sent before the
write cycle has ended internally, the write might be dis-
turbed and invalidated.

EEPROM DATA MEMORY ACCESS
Using the “Read EEPROM Data Memory” command,
EEPROM contents can be read one byte at a time. The

command sends a memory address ($0a bb) to select a
byte location in the EEPROM.

EEPROM is written like Flash memory, with the “Write
EEPROM Memory” command. This command selects byte
to write just like “Read EEPROM Memory”, and transfers
the data to be written in the last byte sent to the target.
Unlike parallel programming, there is no method to detect

when the Flash write cycle has ended. The programmer
should simply wait 4 ms before attempting to send another
command to the interface. If a command is sent before the
write cycle has ended internally, the write might be dis-
turbed and invalidated.

Table 8. Example, Reading 'add r16,r17' as $0F01 from Flash Memory location $104

Action MOSI, Sent to target AVR MISO, Returned from target AVR

Read $01 at address $104, low byte $20 01 04 xx $zz 20 01 01

Read $0F at address $104, high byte $28 01 04 yy $xx 28 01 0F

Table 9. Example, Writing 'add r17,r18' as $0F12 to Flash Memory location $10C

Action MOSI, Sent to target AVR MISO, Returned from target AVR

Write $12 at address $10C, low byte $60 01 0C 12 $zz 60 01 0C

Wait 4 ms

Write $0F at address $10C, high byte $68 01 0C 0F $xx 68 01 0C

Wait 4 ms

Table 10. Example, Reading $ab from EEPROM location $3F

Action MOSI, Sent to target AVR MISO, Returned from target AVR

Read $ab at address $3F $A0 00 3F xx $zz A0 00 AB

Table 11. Example, Writing $0F to EEPROM location $11

Action MOSI, Sent to target AVR MISO, Returned from target AVR

Write $0F at address $11 $C0 00 11 0F $zz C0 00 11

Wait 4 ms

AVR910

7

LOCK BITS ACCESS
To protect memory contents from being accidentally over-
written, or from unauthorized reading, the lock bits can be
set to protect the memory contents. As seen from Table 12
below, the memories be either protected from writing by
programming, or the programming interface can be discon-
nected completely from the memory block, disabling both
reading and writing of memories on the chip.

The lock bits can not be read, and setting lock bits can not
be verified by the programmer. To check that the lock bits
have been set properly, one should attempt to alter a loca-
tion in EEPROM. When Lock Bit 1 is set, memory locations

are not altered. When both lock bits 1 and 2 are both set,
no location can be read, and the result returned will be the
low byte of the address passed in the command. Setting
only Lock Bit 2 will have no protective effect, before the
chip is protected from reading, it has to be successfully pro-
tected from writing.

The lock bits will only prevent the programming interface
from altering memory contents. The core can read the
Flash program memory and access the EEPROM as usual,
independent of the lock bit setting.

The only method to regain access to the memory after set-
ting the lock bits, is by erasing the entire chip with a “Chip
Erase” command. The lock bits will be cleared to 1, dis-
abling the protection, only following a successful clearing of
all memory locations.

On chip erase, the lock bits obtain the value 1, indicating
the bit is cleared. Although the operation of enabling the
protection is referred to as “setting” the lock bit, a zero
value should be written to the bit to enable protecting.

CHIP ERASE OPERATION
Before new contents can be written to the Flash Program
Memory, the memory has to be erased. Without erasing, it
is only possible to program bits in Flash Memory to zero,
not selectively setting a bit to one. Erasing the memory is
performed with the “Chip Erase” command. This command
will erase all memory contents, both Flash program Mem-
ory and EEPROM.

After successfully erasing the memory, the lock bits are
erased. This method ensures that data the memories are
kept secured until all data have been completely erased
before access is again granted.

Following a chip erase, all memory contents will read as
$FF.

The only way to end a chip erase cycle, is by temporarily
releasing the RESET line.

Table 12. Lock Bits Protection Modes

Lock Bit 1 Lock Bit 2 Protection Type

1 1 No Memory Lock

0 1 Further Programming of both Flash and EEPROM Disabled

0 0 Further Programming and Verification of both Flash and EEPROM Disabled

Table 13. Example, Setting Lock Bit 1 to Disable Further Programming

Action MOSI, Sent to target AVR MISO, Returned from target AVR

Set Lock Bit 1, Disable Programming $AC FD xx yy $zz AC FD xx

Wait 4 ms

Table 14. Example, Erasing all Flash Program memory and EEPROM contents

Action MOSI, Sent to target AVR MISO, Returned from target AVR

Erase chip $AC 8x yy nn $zz AC 8x yy

Wait 10 ms

Release RESET to end the erase

AVR9108

A Simple Low Cost In-System Programmer
This application note will not discuss all aspects of an In-
System programmer. Instead, it will show how a simple low
cost programmer can be made, using only an AT90S1200
and a few discrete components. This programmer can be
obtained from Atmel, or one of Atmel's distributors.

The programmer will plug into any serial port of any PC.
The AT90S1200 doesn't come with a hardware UART, but
the software will run a half duplex UART by using the
Timer/Counter 0 to clock data. The S1200 also takes care
of programming the target AVR by running the master SPI
entirely in software.

The schematics to the programmer can be seen in Figure 3
below. Power to the S1200 is taken from the target system.

The negative voltage needed to communicate serially with
the PC is stored in C100 when receiving a logical one (neg-
ative line voltage).

The transmit line is fed with this negative voltage from
C100, when transistor Q100 is closed. This sends a logical
one on the transmit line. Logical zeros (positive voltage) is
sent by opening Q100, connecting VCC (actually VCC - 0.2
V) to the transmit line.

Some older PC systems might have serial port not accept-
ing voltages below +10 volts as logical zero. This, however,
is not a problem with the majority of existing PCs.

Figure 3. A Low Cost In-System Programmer

U100

AT90S1200

GND
AIN0/PB0
AIN1/PB1

PB2
PB3
PB4
PB5
PB6
PB7

XTAL2

VCC
RESET
PD0
PD1
PD2/INT0
PD3
PD4
PD5
PD6
XTAL1

10
12
13
14
15
16
17
18
19
4

20
1
2
3
6
7
8
9

11
5

1M0
R106

XC1004 MHZ

VCC

MOSI

GND

J101

2

4

6

1

3

5

MISO

SCK

RESET

CONNECTOR AS
SEEN FROM BELOW

GND

C101 100N

R
10

3
4K

7

R
10

2
4K

7

4K7

4K7

PAD

RXD
TXD

R
10

1
4K

7

R
10

0
4K

7

BC847C
Q101

R105

D101
BAS16

BAS16

D100

20V

1.0uF
+
C100

RECEIVE

TRANSMIT

1

2

3

6

7

5

4
8

9

9-PIN D-SUB
FEMALE

R104J100
BC857C

Q100

AVR910

9

Part List
QTY Position Value Device Tolerance Vendor Comment

 1 C100 1U0/20V CE1U020V 20% PHILIPS +++ TANTAL CAPACITOR, SMD,
(EIA3216)

 1 C101 100N/50V C08B100N 10%_X7R MURATA +++ CERAMIC CAPACITOR,
0805, X7R

 2 D100,D101 75V/100MA BAS16 PHILIPS +++ SWITCH DIODE, SO-23
PACKAGE

 1 J100 9 PIN DSUB-9FSOL HARTING +++ 9 PIN D-SUB, FEMALE,
SOLDER, 1.6MM ROW
SPACING, 2.54 MM PIN

 1 JCABLE 6 PIN HEADER6FC HARTING +++ 6 PIN HEADER (IDC),
FEMALE, CABLE MOUNT

 1 Q100 45V/100MA BC857C PHILIPS +++ SMD NPN TRANSISTOR,
SO-23 PACKAGE

 1 Q101 45V/100MA BC847C PHILIPS +++ SMD PNP TRANSISTOR,
SO-23 PACKAGE

 6 R100-105 4K7 R08_4K7 1% KOA +++ RESISTOR, 0.125W, 1%,
0805

 1 R106 1M0 NOT_USED 1% KOA +++ RESISTOR, 0.125W, 1%,
0805

 1 U100 SOIC-20 AT90S1200-4SC ATMEL AVR MICROCONTROLLER,
20 PIN SOIC

 1 XC100 4.0MHZ CSTCC4.00MG 0.5% MURATA/AVX +++ CERAMIC RESONATOR,
4.00 MHZ, SMD (AVX:
PRBC-4.0 B R)

 1 HOUSING 9 PIN D-SUB HOUSE 0.5% AMP +++ 9 PIN D-SUB PLASTIC
HOUSING

 1 CABLE 6 LEAD FLATCABLE HARTING +++ FLATCABLE, 6 LEAD, 300
MM

 1 PCB FR4/1.6MM A9702.3.1000.A ATMEL PRINTED CIRCUIT BOARD
NO. A9702.3.1000.A

