2-channel reversible motor driver BA6238A/BA6238AN/BA6239A/BA6239AN

The BA6238A, BA6238AN, BA6239A, and BA6239AN are monolithic ICs incorporating two reversible-motor drivers that are suitable for driving small DC brush motors.

The logic input section for controlling each motor can be easily connected with CMOSs and other control logic outputs. The torque during loading can be varied by controlling the voltage supplied to the motor with pin 8 of the output section.

With a limited number of external parts, each driver has a function of two reversible-motor drivers.

Applications

VCRs and audio tape recorders

Features

- 1) Two reversible-motor driver circuits are built in. (not operable at the same time)
- 2) Limited number of external parts.
- 3) Interface with CMOS devices. (protective resistor required when the CMOS output is higher than 5V)
- 4) Built-in power transistor for motor driving.
- 5) Built-in diode to absorb surge currents.
- 6) Built-in thermal shutdown circuit. (the circuit breaks the output when the chip temperature is increased due to such an event as motor locking)

Block diagram

ROHM

Reversible DC Motor Drivers

Drivers

●Absolute maximum ratings (Ta=25℃) RA6238A / BA6238AN

DADZJOA/	DAOZJOAN	

Parameter		Symbol	Limits	Unit	
Power supply	Power supply voltage		20	v	
Power	BA6238A	Dal	2200*1		
dissipation	BA6238AN	Pd –	1000*2	mW	
Operating temperature		Topr	25~75	ĉ	
Storage temperature		Tstg	-55~125	Ĵ	
Input voltage		VIN	-0.3~5	V	
Output curre	nt	Іолт	1.6*3	Α	

*1 Refer to the power dissipation characteristics (Fig. 8) for details. *2 Refer to the power dissipation characteristics (Fig. 9) for details. *3 500 μ s pulse with a duty ratio of 1%.

BA6239A/BA6239AN

Para	ameter	Symbol	Limits	Unit	
Power suppl	Power supply voltage		20	V	
Power BA6239A		D	2200*1		
dissipation	BA6239AN	- Pd	1000*2	mW	
Operating temperature		Topr	-25~75	ĉ	
Storage tem	Storage temperature		-55~125	ĉ	
Input voltage		Vin	-0.3~5	v	
Output curre	nt	lour	1.2*3	A	

*1 Refer to the power dissipation characteristics (Fig. 8) for details. *2 Refer to the power dissipation characteristics (Fig. 9) for details. *3 500 μ s pulse with a duty ratio of 1%.

Recommended operating conditions (Ta=25°C) BA6238A/6238AN

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc1 Vcc2	8	-	18	v
Power supply voltage	Va	0	_	18	v

BA6239A/6239AN

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc1 Vcc2	8	-	18	V
Power supply voltage	Va	8	—	18	V

478

RÜHM

BA6238A/BA6238AN/BA6239A/BA6239AN

\blacksquare Electrical characteristics (unless otherwise noted, Ta=25°C and Vcc=12V) BA6238A/BA6238AN

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Measurement Circuit
Circuit current	loc	-	12	24	mA	R _L =∞ ; 4, 5, 6pin="L"	Fig.1
LOW level input voltage of pins 4, 5, and 6	V⊫		_	1.0	v	_	Fig.1
HIGH level input voltage of pins 4, 5, and 6	Vн	4.0		_	v		Fig.1
LOW level output voltage of pins 2, 3, and 10	Vol		0.8	1.5	v	8pin≕open, lo≔0.5A	Fig.1
HIGH level output voltage of pins 2, 3, and 10	Vон	10	10.5	_	v	8pin=open, Io=0.5A	Fig.1
Output leakage current	ło∟		_	1	mA	Current flowing into pin 9 when pin 4, 5, 6 = LOW and $R_L = \infty$	Fig.1
Output offset voltage of pin 2	∆V₂	-0.5	_	0.5	v	V _R ≔6.0V In reference to pin 8, lo(₂) = 0.5 A	Fig.1
Output offset voltage of pin 3	∆V₃	-0.5	-	0.5	v	Vn=6.0V In reference to pin 8, $l_{O(3)} = 0.5$ A	Fig.1
Output offset voltage of pin 10	∆V10	-0.5	_	0.5	v	Vn=6.0V In reference to pin 8, Io(10) = 0.5 A	Fig.1
Pin 8 source current 1	le (2)	0.2	0.6	1.5	mA	2pin= "H", I(2) =0.5A Vn=6.0V	Fig.1
Pln 8 source current 2	le (3)	0.2	0.6	1.5	mA	3pin= "H", 1(3) =0.5A VR=6.0V	Fig.1
Pin 8 source current 3	le (10)	0.2	0.6	1.5	mA	10pin= "H", lo (10) =0.5A Va=6.0V	Fig.1
Backlash current	lΒ	-	_	0.3	A	Pin 4, 5, 6 = LOW; current flowing into pin 9 when one of the output pins is -1 V	Fig.1
Thermal shutdown activation temperature	Ton	_	150	-	ç	_	Fig.1
Fhermal shutdown deactivation temperature	TOFF		100	-	ĉ	_	Fig.1

Reversible DC Motor Drivers

BA6239A/BA6239AN

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Measurement Circuit
Circuit current	lcc	-	12	24	mA	R∟=∞ 4, 5, 6pin="L"	Fig.2
LOW level input voltage of pins 4, 5, and 6	Vil	-	_	1.0	v	-	Fig.2
HIGH level input voltage of pins 4, 5, and 6	Ин	4.0		_	v	-	Fig.2
LOW level output voltage of pins 2, 3, and 10	Vol	_	0.8	1.5	v	R _L =100Ω	Fig.2
HIGH level output voltage of pins 2, 3, and 10	Vон	10.5	11.2	_	v	RL=100Ω	Fig.2
Output leakage current	Іон	_		1	mA	Current flowing into pin 9 when pin 4, 5, 6 = LOW . $B_L = \infty$	Fig.2

ROHM

479

BA6238A/BA6238AN/BA6239A/BA6239AN

Measurement circuit

Fig.1 BA6238A / BA6238AN

Fig.2 BA6239A / BA6239AN

Application example

Fig.3 BA6238A / BA6238AN

Input/output truth table

	Input			Output		Function
4pin	5pin	6pin	10pin	2pin	3pin	Punction
L	L	х	L	L	L	Brake
н	L	L	H	L	OPEN	Current flow from pin 10 to pin 2
н	L	н	L	Н	OPEN	Current flow from pin 2 to pin 10
L	Н	L	Н	OPEN	L	Current flow from pin 10 to pin 3
L	н	н	L	OPEN	н	Current flow from pin 3 to pin 10
Н	H	Х	L	L	L	Brake

X: Don't care

480

ROHM

Motor Drivers

g

Circuit operation

(1) Input (pins 4, 5, and 6)

These pins receive control logic signals. The relevant circuits are designed to have hysteresis and antinoise characteristics. The input circuit can control the logic by input currents of a few microamperes or more. The motor connected between pins 10 and 2 is selected when pin 4 is HIGH and pin 5 is LOW, while the motor connected between pins 10 and 3 is selected when pin 5 is HIGH and pin 4 is LOW. Pin 6 is the forward / reverse control input pin.

(2) Output (pins 2, 3, and 10)

Pin 10 is the common pin. Either pin 2 or 3 is left OPEN during motor driving. The waveform monitored on the OPEN pin will be the same as that on pin 10.

1) BA6238A/BA6238AN

The output stage configuration of the BA6238A / BA6238AN is shown in Fig. 5. The output stage contains NPN transistors in a Darlington configuration, which means the saturation voltage between Vcc1 and the output pin is rather high but the output voltage can be easily set by using a zener diode or a resistor voltage divider. The voltage on the V_R pin can be varied from 0V to Vcc1. The output voltage is at the maximum when pin 8 is OPEN.

VOH=VCC1-Vset (PNP)-2×VBE (NPN Darlington) VoL=Vsat (NPN Darlington)

V_{set} and V_{BE} are functions of the output current (see Fig. 17).

2) BA6239A/BA6239AN

The output configuration of the BA6239A/BA6239AN is shown in Fig. 6. Because the output stage contains only one NPN transistor, the saturation voltage between pin 8 and the output pin is about 0.7V less than that in the BA6238A. The output voltage is controlled by the pin-8 voltage. The voltage on the Vn pin can be varied from 8V to Vcc1. The output voltage is at the maximum when pin 8 is Vcc1.

VOH=VR-Vset (PNP)-VBE (NPN)

VoL=Vsat (NPN Darlington)

Vsat and VBE are functions of the output current (see Fig. 18).

(3) Output control (pin 8)

Output voltage can be varied by controlling the pin-8 voltage.

1) BA6238A/BA6238AN

The pin-8 voltage can vary from 0V to Vcc. Because a constant current (0.6mA typically) flows out from pin 8, the output voltage can be controlled by using a zener diode or a resistor voltage divider.

2) BA6239A/BA6239AN

In addition to controlling the output voltage, pin 8 supplies base current to the high-side output transistor (NPN).

(4) Power supply (pins 7 and 9)

Pin 7 supplies power to the input, logic, and thermal shutdown circuits. Pin 9 supplies power to the output transistors.

(5) Thermal shutdown circuit

Regardless of the input mode, the thermal shutdown circuit puts the outputs to LOW level when the chip temperature rises due to such an event as motor locking. When the thermal shutdown circuit is deactivated, the outputs revert to the status determined by input mode.

The thermal shutdown circuit is activated when the chip temperature exceeds 150°C (125°C minimally), and deactivated when the chip temperature drops to 100℃ (125℃ maximally). The minimum temperature difference between the activation and deactivation settings is 10°C.

(6) Ground pin and fins

Pin 1 and the fins have the minimum potential within the IC. The PCB design should ensure that the common impedance is kept as low as possible when a large current flows.

ROHM

BA6238A/BA6238AN/BA6239A/BA6239AN

Operation notes

(1) Though the IC input pins can be directly connected with MOS output pins, it is recommendable to connect resistors of about $3 \sim 30 k\Omega$ between the pins for the sake of pin protection (see Fig. 7).

(2) When reversing the rotational direction of a motor, make sure to go through the brake mode in-between the opposite directions. It is recommendable to keep the brake mode for at least 10 μ s.

(3) Powering procedures should be designed so that V_{CC1} (pin 7) always rises first and falls last.

Electrical characteristic curves

482

rohm

60

50

۵ſ

30 20

10

0^L

16

12

10

8 6

2

0

OUTPUT VOLTAGE : VOUT (V)

0.6

1.2

OUTPUT CURRENT : IOUT (A)

output current (BA6238A)

Fig.17 Output voltage vs.

0.4

(Am) 8j

BA6238A/BA6238AN/BA6239A/BA6239AN

DC Motor Drivers

ROHM

OUTPUT CURRENT : IOUT (A)

output current (BA6239A)

Fig.18 Output voltage vs.

483

BA6238A/BA6238AN/BA6239A/BA6239AN

External dimensions (Units: mm)

ROHM