# 2-channel PRE/REC amplifier with auto-tracking interface BA7181FS

The BA7181FS is a PRE/REC amplifier developed for use in video cassette recorders. It has been designed for use in two-head decks and features built-in FB damping, two preamplifiers, a chroma output amplifier, an FM output amplifier (with AGC), an envelope detector, a constant-current BTL-drive REC amplifier (with AGC) and built-in channel and REC/PB switches on a single monolithic IC.

#### Applications

**VCRs** 

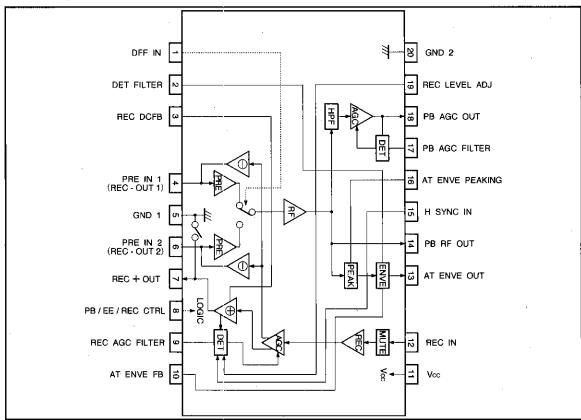
### Features

- 1)The playback amplifier has a total gain of 57dB (Typ.), and has a low-noise preamplifier. Designed for VHSband operation with low external parts count. The IC has two circuits for two-head VCR applications.
- 2) Two playback output systems (through output and AGC output). The AGC output level is 300mV<sub>P-P</sub> (Typ.); suitable for FM brightness signal output.
- 3)Auto-tracking interface is provided for automated tracking adjustment. The detector characteristic is linear, and the sensitivity can be adjusted using external components.
- 4)The recording amplifier uses constant-current BLT drive that handles load variations (i.e. head impedance) well, and gives stable recording characteristics. A single circuit is provided for two-head VCR use.
- 5)Built-in recording level AGC means adjustment of FM recording current is not necessary.
- 6)Head switches for two-channel PRE/REC system provided
- 7)Operates off a single 5V power supply, with low power dissipation.

### ●Absolute maximum ratings (Ta=25°C)

| Parameter             | Symbol | Limits         | Unit |
|-----------------------|--------|----------------|------|
| Applied voltage       | Vcc    | 7.0            | V.   |
| Power dissipation     | Pd     | 937.5 *        | mW   |
| Operating temperature | Topr   | -20~65         | r    |
| Storage temperature   | Tstg   | <b>−55∼150</b> | °C   |

<sup>\*</sup> Mounted on a 90mm × 50mm, t = 1.6mm glass epoxy PCB. Reduced by 7.5mW for each increase in Ta of 1°C over 25°C.


#### ■Recommended operating conditions (Ta=25°C)

| Parameter          | Symbol | Min. | Тур. | Max. | Unit | Conditions |
|--------------------|--------|------|------|------|------|------------|
| Playback/recording | Vcc-   | 4.5  | 5.0  | 5.5  | V    | 11pin      |

ONot designed for radiation resistance.

Video ICs BA7181FS

# Block diagram



# ●Electrical characteristics (Unless otherwise specified, Ta=25°C, Vcc=5.0V and f=4.0MHz)

| Parameter                 | Symbol           | Min.       | Тур. | Max.     | Unit             | Conditions                                                                  | Measurement<br>Circuit |
|---------------------------|------------------|------------|------|----------|------------------|-----------------------------------------------------------------------------|------------------------|
| (Playback system)         |                  |            |      |          |                  | Fig. 1 measurement circuit, pin 8: H                                        |                        |
| Quiescent current         | lq (P)           | _          | 18   | 45       | mA               | No signal                                                                   | Fig.1                  |
| Voltage gain CH-1         | GvP1             | 54         | 57   | 60       | dB               | Pin 4 input = 0.3mV <sub>P-P</sub> , pin 1: L,<br>pin 14 output measurement | Fig.1                  |
| Voltage gain CH-2         | GvP2             | 54         | 57   | 60       | dΒ               | Pin 6 input = $0.3mV_{P-P}$ , pin 1: H,<br>pin 14 output measurement        | Fig.1                  |
| Voltage gain differential | ΔGvp             | _          | 0    | 1        | dB               | ΔGVP=  GVP1-GVP2                                                            | Fig.1                  |
| Frequency characteristic  | ΔGvi             | <b>-</b> 7 | -3   | 0        | dB               | Difference in pin 14 output level for f = 8.0/1.0MHz,<br>VIN = 0.3mVP-P     | Fig.1                  |
| 2nd harmonic distortion*  | 2HD <sub>P</sub> | _          | -45  | -        | dBc              | VIN = 0.3mV <sub>P-P</sub> , 8.0MHz spurious                                | Fig.1                  |
| 3rd harmonic distortion*  | 3HD <sub>P</sub> | _          | -45  |          | dBc              | VIN = 0.3mV <sub>P-P</sub> , 12.0MHz spurious                               | Fig.1                  |
| Maximum output level      | Vomp             | 1.0        | 1.5  | <u> </u> | V <sub>P-P</sub> | When pin 14 output 2nd harmonic distortion is -30dBc                        | Fig.1                  |
| Crosstalk                 | CTp              |            | -38  | 32       | dBc              | Difference in pin 14 output level for pin 1: H/L                            | Fig.1                  |

<sup>\*</sup> Design reference values.

PRE/REC amplifiers

# ●Electrical characteristics (Unless otherwise specified, Ta=25°C, Vcc=5.0V and f=4.0MHz)

| Parameter                           | Symbol            | Min. | Тур. | Мах.  | Unit              | Conditions                                                                                   | Measurement<br>Circuit |
|-------------------------------------|-------------------|------|------|-------|-------------------|----------------------------------------------------------------------------------------------|------------------------|
| (Playback system)                   |                   |      |      |       |                   | Fig. 1 measurement circuit, pin 8: H                                                         |                        |
| Output DC offset                    | ΔVooc             | _    | 0    | 150   | mV <sub>P-P</sub> | Pin 14 output DC offset for pin 1: H/L                                                       | Fig.1                  |
| Input conversion noise *1           | VNIN              | -    | 0.25 | _     | μ Vrms            | Rg = $10 \Omega$ , input conversion of pin 14 output noise                                   | Fig.1                  |
| AGC output level                    | Vago              | 250  | 300  | 350   | mV <sub>P-P</sub> | V <sub>IN</sub> = 0.3mV <sub>P-P</sub> , pin 18 output measurement                           | Fig.1                  |
| AGC control sensitivity             | ΔVAGC             |      | 0.3  | 2.0   | dB                | Pin 18 output difference for V <sub>N</sub> = 0.15<br>~ 0.6mV <sub>P-P</sub>                 | Fig.1                  |
| AGC amp frequency characteristic *1 | ΔGVAF             | _    | 0.5  | _     | dB                | Pin 18 output level difference for<br>f = 8.0/1.0MHz, V <sub>IN</sub> = 0.3mV <sub>P-P</sub> | Fig.1                  |
| PB switch ON resistance *1          | RON7              | _    | 4    |       | Ω                 | Pin 7 impedance                                                                              | Fig.1                  |
| PRE CH 2 threshold voltage          | Vтнан             | 3.5  | _    | . Vcc | V                 | Pin 1 DC voltage for CH 2 operation                                                          | Fig.1                  |
| PRE CH 1 threshold voltage          | VTH1L             | 0    |      | 1.2   | V                 | Pin 1 DC voltage for CH 1 operation                                                          | Fig.1                  |
| ENVE residual voltage               | V <sub>ENV1</sub> |      | 0.7  | 1.0   | V                 | Pin 13 output measurement with no signal                                                     | Fig.1                  |
| ENVE output level                   | VENV2             | 2.4  | 2.9  | 3.4   | ٧                 | Pin 13 output measurement when pin 14 output = 400mVe.p                                      | Fig.1                  |
| ENVE saturation voltage             | Venva             | 4.0  | 4.5  | _     | V                 | Pin 13 output measurement for large signal                                                   | Fig.1                  |
| PB mode threshold voltage           | Vтн10н            | 3.8  | _    | Vcc   | ٧                 | Pin 8 DC voltage for PB mode                                                                 | Fig 1                  |
| EE mode threshold voltage           | Vтн10м            | 2.2  | _    | 2.8,  | V                 | Pin 8 DC voltage for REC MUTE mode                                                           | Fig.1                  |
| REC mode threshold voltage          | VTH10L            | 0    | _    | 1.2   | V                 | Pin 8 DC voltage for REC mode                                                                | Fig.1                  |

<sup>\*</sup> Note: dBc: dB below carrier (used to express relative level from carrier reference for convenience sake).
\*1 Design reference values.

# ●Electrical characteristics (Unless otherwise specified, Ta=25°C, Vcc=5.0V, f=4.0MHz and IoAR=30mAP-P)

| Parameter                               | Symbol             | Min. | Тур.       | Max. | Unit              | Conditions                                                                   | Measurement<br>Circuit |
|-----------------------------------------|--------------------|------|------------|------|-------------------|------------------------------------------------------------------------------|------------------------|
| (Recording system)                      |                    |      |            |      |                   | Pin 8 in Fig. 2 measurement circuit L                                        |                        |
| Quiescent current                       | iq (R)             | _    | - 72       | 110  | mA                | No signal                                                                    | Fig.2                  |
| Recording AGC level                     | loan               | 27   | 30         | 33   | mAr-r             | Pin 12 input = 125mV <sub>P-P</sub> , pin 7 output measurement               | Fig.2                  |
| AGC control sensitivity                 | ∆ loar             | _    | 0.3        | 1.5  | dB                | Pin 7 output level difference for pin 12 input = 62.5mVp.p and 250mVp.p      | Fig.2                  |
| REC Amp frequency characteristic *      | ∆ loaf             | _    | -1.5       |      | dB                | Pin 7 output level difference for f = 8.0/1.0MHz,<br>pin 12 input = 125mVp-p | Fig.2                  |
| 2nd harmonic distortion *               | 2HDn               |      | 45         |      | dBc.              | Pin 12 input = 125mV <sub>P-P</sub> , 8MHz spurious                          | Fig.2                  |
| 3rd harmonic distortion *               | 3HDa               |      | -50        |      | dBc               | Pin 12 input = 125mVp.p, 12.0MHz spurious                                    | Fig.2                  |
| Cross modulation distortion *           | CMDa               |      | -50        | _    | dBc               | 4.0MHz ± 630kHz spurious                                                     | Fig.2                  |
| Maximum output level                    | Іомв               | 40   | 50         | _    | mA <sub>P-P</sub> | When pin 7 output 2nd harmonic distortion is -30dB                           | Fig.2                  |
| Recording current load characteristic * | Δlorl              | _    | -0.35      |      | dB                | Pin 7 output level difference for load L: 8.2 $\sim$ 12 $\mu$ H              | Fig.2                  |
| Mute attenuation ratio                  | MUn                | _    | <b>-45</b> | -38  | d₿c               | Pin 7 output level difference for pin 8: M/H                                 | Fig.2                  |
| AGC mode threshold voltage              | V <sub>TH1SH</sub> | 2.7  |            | Vcc  | ١V                | Pin 15 DC voltage to maintain recording AGC operation                        | Fig.2                  |
| AGC mode threshold voltage              | VTH15L             | 0    | _          | 1.2  | V                 | Pin 15 DC voltage to maintain recording AGC stopped                          | Fig.2                  |

<sup>\*</sup> Design reference values.

# Measurement circuit (playback system)

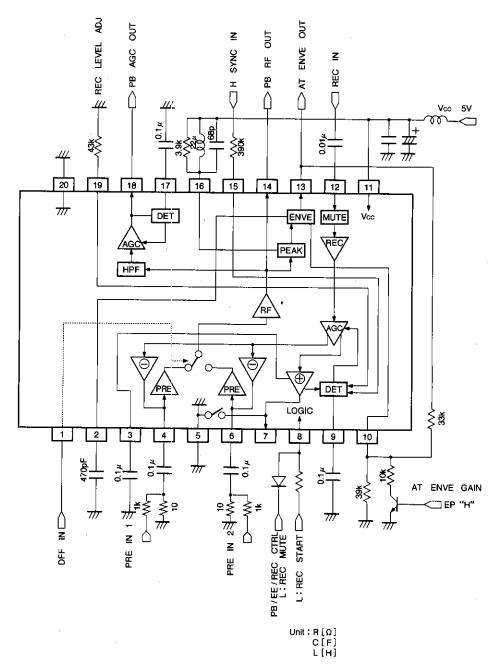



Fig.1

Measurement circuit (recording system)

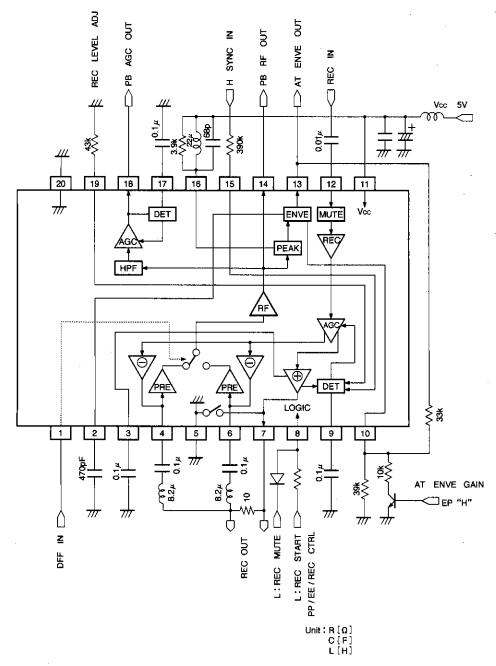



Fig.2

# ●Control mode table

(1) DFF IN (pin 1)
•Playback input selection (head switching)

| Control pin | Function                | Control voltage VcTRL1 [V] |  |
|-------------|-------------------------|----------------------------|--|
| DFF IN      | Selected playback input |                            |  |
| Н           | CH2 (PRE IN2 7pin)      | 3.5 ∼ Vcc                  |  |
| Ł           | CH1 (PRE IN1 5pin)      | 0.0 ~ 1.2                  |  |

# (2) H SYNC IN (pin 15)

·Controls recording AGC detector block operation.

| Control pin | Function     | Control voltage VcTRL15 [V] |  |
|-------------|--------------|-----------------------------|--|
| H SYNC      | AGC detector | VCTRL15 [V]                 |  |
| Н           | ON           | 2.7 ~ Vcc                   |  |
| L           | OFF          | 0.0 ~ 1.2                   |  |

(3) PB/EE/REC CTRL (pin 8)
• Playback/recording mute/ recording mode switching

| Control pin | Mode     |         | Control voltage |          |         |            |
|-------------|----------|---------|-----------------|----------|---------|------------|
| PB/EE/REC   | Mode     | PRE AMP | AT ENVE         | REC MUTE | REC AMP | VCTRL9 [V] |
| Н           | PB       | ON      | ON              | OFF      | OFF     | 3.8 ~ Vcc  |
| M           | REC MUTE | OFF     | OFF             | ON       | ON      | 2.2 ~ 2.8  |
| L           | REC      | OFF     | OFF             | OFF      | ON      | 0.0 ~ 1.2  |

<sup>\*</sup> Pin 8 is pulled up to Vcc via a 33k  $\Omega$  resistor.

# Application example

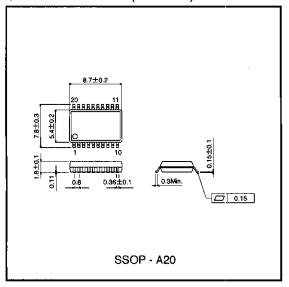




Fig.3

# ●External dimensions (Units: mm)



352

#### Notes

- The contents described in this catalogue are correct as of March 1997.
- No unauthorized transmission or reproduction of this book, either in whole or in part, is permitted.
- The contents of this book are subject to change without notice. Always verify before use that the contents are the latest specifications. If, by any chance, a defect should arise in the equipment as a result of use without verification of the specifications, ROHM CO., LTD., can bear no responsibility whatsoever.
- Application circuit diagrams and circuit constants contained in this data book are shown as examples of standard use and operation. When designing for mass production, please pay careful attention to peripheral conditions.
- Any and all data, including, but not limited to application circuit diagrams, information, and various data, described in this catalogue are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO., LTD., disclaims any warranty that any use of such device shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes absolutely no liability in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices; other than for the buyer's right to use such devices itself, reself or otherwise dispose of the same; no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD., is granted to any such buyer.
- The products in this manual are manufactured with silicon as the main material.
- The products in this manual are not of radiation resistant design.

The products listed in this catalogue are designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers, or other safety devices) please be sure to consult with our sales representative in advance.

#### Note when exporting

- It is essential to obtain export permission when exporting any of the above products when it
  falls under the category of strategic material (or labor) as determined by foreign exchange or
  foreign trade control laws.
- Please be sure to consult with our sales representatives to ascertain whether any product is classified as a strategic material.