Multimedia ICs

Video signal switcher for AV amplifiers BA7625

The BA7625 is a video signal switch that contains two five-channel analog multiplexers and wide-band 6dB amplifiers. It designed for use in video cassette recorders. By simply adding transistor buffers to the outputs, it is possible to construct a record/playback switch for two record/playback VCRs, and three video playback machines (eg. laser disk players). Input switching and VCR record switching can be done independently. The BA7625 has sync-tip clamp inputs which are ideal for switching video signals.

Applications

AV amplifiers and video selectors

Features

1)5-input / 3-output switches.
 2)Sync-tip clamp inputs.

3)Built-in 6dB amplifiers.4)5V supply voltage.

Block diagram

Truth table

	_	_						
	В	E	Monitor OUT					
L	L	*	IN1					
Н	L	*	IN2					
L	н	*	IN3					
н	н	L	IN4					
н	H	н	IN5					

С D Е VOUT1 L L * ____ н L * IN2 н IN3 L * н н L IN4 н н н IN5

С	D	E	VOUT2
L	L	*	IN1
н	L	*	_
L	н	*	IN3
н	н	L	IN4
Н	н	Н	IN5

Note 1: * indicates "don't care" (H or L).

ROHM

Multimedia ICs

BA7625

●Absolute maximum ratings (Ta=25℃)

Parameter	Symbol	Limits	Unit	
Power supply voltage	Vcc	9	V	
Power dissipation	Pd	500 *	mW	
Operating temperature	Topr	-25~70	Ĵ	
Storage temperature	Tstg	-55~125	Ĵ	

* Reduced by 5mW for each increase in Ta of 1°C over 25°C.

ROHM

٠

;

Equivalent input / output circuits

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Operating voltage	Vcc	4.5	5.0	5.5	V	
Circuit current	lcc		15.0	20.0	mA	
Maximum output level	Vom	2.6	2.9		VP-P	f=1kHz, THD=0.5%
Voltage gain	Gv	5.7	6.2	6.7	dB	f=MHz, VIN=1VP-P
Interchannel crosstalk	СТ	_	-65	-45	dB	f=4.43MHz, VIN=1VP-P
Mute level	СТМ	_	-35	-25	dB	f=4.43MHz, VIN=1VP-P
Frequency characteristic	Gr	-3	0	3	dB	10MHz / 1MHz, VIN=1VP-P
CTL pin switch level	Vтн	2.2	_	3.3	v	_

●Electrical characteristics (Unless otherwise specified Ta=25℃ and Vcc=5V)

 $\mathbb O \mathsf{Not}$ designed for radiation resistant.

Measurement circuit

Fig.1

568

Rohm

Measurement conditions

Deverates	Osumb al	Switch settings										Measure-
Parameter	Symbol	SW1	SW2	SW₃	S₩₄	SW₅	SWA	SWв	SWc	SWD	SWE	method
Current comsumption	lcc	3	3	3	3	з	2	2	2	2	2	
Monitor OUT maximum output level	Vom 1MON Vom 2MON Vom 3MON Vom 4MON Vom 5MON	2 3 ↓ ↓	3 2 3 ↓	3 ↓ 2 3 ↓	3 ↓ 2 3	3 ↓ ↓ 2	32322	3 3 2 2 2	* ↓ ↓	*	* ↓ 3 2	Note 1
Monitor OUT voltage gain	Gv 1MON Gv 2MON Gv 3MON Gv 4MON Gv 5MON	2 3 ↓ ↓	3 2 3 ↓	3 ↓ 2 3 ↓	3 ↓ 2 3	3 ↓ ↓ 2	3 2 3 2 2	3 3 2 2 2	*	* ↓ ↓	* + 3 2	Note 2
	CT1-2MON CT1-3MON CT1-4MON CT1-5MON	2 ↓ ↓	3 	3 ↓ ↓	3 	3 ↓ ↓	2 3 2 2	3 2 2 2	* ↓ ↓	*	* + 3 2	
	CT2-1MON CT2-3MON CT2-4MON CT2-5MON	3 ↓ ↓	2 ↓ ↓	3 ↓ ↓	3 ↓ ↓	3 ↓ ↓	3 3 2 2	3 2 2 2	* ↓ ↓	* ↓ ↓	* ↓ 3 2	
Monitor OUT interchannel crosstalk	CT3-1MON CT3-2MON CT3-4MON CT3-5MON	3 ↓ ↓	3 ↓ ↓	2 ↓ ↓	3 ↓ ↓	3 ↓ ↓	3 2 2 2	3 3 2 2	*	*	* ↓ 3 2	Note 3
	CT4-1MON CT4-2MON CT4-3MON CT4-5MON	3 ↓ ↓	3 ↓ ↓	3 ↓ ↓	2 ↓ ↓	3 ↓ ↓	3 2 2 2	3 3 2 2	* ↓ ↓	* + +	* ↓ 3	
	CT5-1MON 3 3 3 3 CT5-2MON ↓ ↓ ↓ ↓ ↓ CT5-3MON ↓ ↓ ↓ ↓ ↓ CT5-4MON ↓ ↓ ↓ ↓ ↓	2 ↓ ↓	3 2 2 2	3 3 2 2	*	* ↓ ↓	* ↓ ↓ 2					
Monitor OUT frequency characterístic	Gf 1MON Gf 2MON Gf 3MON Gf 4MON Gf 5MON	2 3 ↓ ↓	3 2 3 ↓	3 ↓ 2 3 ↓	3 + 2 3	3 ↓ ↓ 2	3 2 3 2 2	3 3 2 2 2	*	*	* + 3 2	Note 4
Vouth maximum output level	Vom 20UT1 Vom 30UT1 Vom 40UT1 Vom 50UT1	3 ↓ ↓	2 3 ↓	3 2 3 ↓	3 ↓ 2 3	3 ↓ 3 2	*	* ↓ ↓	2 3 2 2	3 2 2 2	* ↓ 3 2	Note 1

ROHM

Measurement conditions

Parameter	Cumhal					Switch	settings					Measure- ment method
	Symbol	SW1	SW2	SW3	S₩₄	SW₅	SW₄	SW₀	SWc	SWD	SWE	
Vouтi voltage gain	Gv 20UT1 Gv 30UT1 Gv 40UT1 Gv 50UT1	3	2 3 ↓	3 2 3 ↓	3 ↓ 2 3	3 ↓ 3 2	* ↓ ↓	* ↓ ↓	2 3 2 2	3 2 2 2	* ↓ 3 2	Note 2
Vouts interchannel crosstalk	CT1-20UT1 CT1-30UT1 CT1-40UT1 CT1-50UT1	2 ↓ ↓	3 ↓ ↓ ↓	3 ↓ ↓	3 ↓ ↓	3 ↓ ↓	* ↓ ↓	* ↓ ↓	3 3 2 2	3 2 2 2	* ↓ 3 2	
	CT2-10UT1 CT2-30UT1 CT2-40UT1 CT2-50UT1	3 ↓ ↓	2 ↓ ↓	3 ↓ ↓	3 ↓ ↓	3 ↓ ↓	*	* ↓ ↓	3 3 2 2	3 2 2 2	* ↓ 3 2	
	CT3-10UT1 CT3-20UT1 CT3-40UT1 CT3-50UT1	3	3	2	3	3 ↓ ↓	* ↓ ↓	* ↓ ↓	3 2 2 2	3 3 2 2	* ↓ 3 2	Note 3
	CT4-10UT1 CT4-20UT1 CT4-30UT1 CT4-50UT1	3	3	3 - - -	2	3 ↓ ↓	* ↓ ↓	*	3 2 3 2	3 3 2 2	* ↓ 2	
	CT5-10UT1 CT5-20UT1 CT5-30UT1 CT5-40UT1	3 ↓ ↓	3 ↓ ↓	3	3 	2 ↓ ↓	* ↓ ↓	*	3 2 3 2	3 3 2 2	* ↓ 3	
Vout1 frequency characteristic	Gi 20UT1 Gi 30UT1 Gi 40UT1 Gi 50UT1	3 + +	2 3	3 2 3 ↓	3 ↓ 2 3	3 ↓ 2	*	*	2 3 2 2	3 2 2 2	* • 3 2	Note 4
Vout2 maximum output level	Vom 10UT2 Vom 30UT2 Vom 40UT2 Vom 50UT2	2 3 ↓	3 2 3 ↓	3	3 ↓ 2 3	3 + 2	* + + + +	*	3 3 2 2	3 2 2 2	* ↓ 3 2	Note 1
Vouт₂ voltage gain	Gv 10UT2 Gv 30UT2 Gv 40UT2 Gv 50UT2	2 3 ↓	3 2 3 ↓	3 ↓ ↓	3 ↓ 2 3	3 + 2	*	* ↓ ↓	3 3 2 2	3 2 2 2	* 3 2	Note 2

570

ROHM

Multimedia ICs

Video signal switcher BA7644AN

The BA7644AN is a four-channel analog multiplexer with mute, designed for use in video cassette recorders. It features a wide dynamic range, and wide operating frequency range, and is suitable for switching audio and video signals.

Applications

VCR, TV and audio signal switching

Features

1)4-input / 1-output switches.
 2)Built-in mute.
 3)Wide operating supply voltage range (4.5V to 13.0V).
 4)Low power consumption (48mW Typ.).

5)Excellent frequency characteristics (10MHz, 0dB Typ.). 6)Wide dynamic range (3.5V_{P-P} Typ.).

CTL - B

L (OPEN)

Н

L (OPEN)

н

*

7)High input impedance (20k Ω Typ.).
8)Low interchannel crosstalk (-65dB Typ., f=4.43MHz).

CTL - C

L (OPEN)

L (OPEN)

L (OPEN)

Н

(OPEN)

L

OUT

IN1

IN2

IN3

IN4

MUTE

Block diagram

*

Truth table CTL - A

L (OPEN)

L (OPEN)

Н

н

* Either "L" (open) of "H".

●Absolute maximum ratings (Ta=25℃)

Parameter	Symbol	Limits	Unit	
Power supply voltage	. Vcc	13.5	V	
Power dissipation	Pd	850 *	mW	
Operating temperature	Topr	-25~75	°C	
Storage temperature	Tstg	-55~125	ک	

* Reduced by 8.5mW for each increase in Ta of 1°C over 25°C.

Equivalent circuits

₽2☆

₀₂夲

AV switches

ROHM

●Electrical characteristics (Unless otherwise specified Ta=25℃ and Vcc=5.0V)

Parameter		Symbol	Min.	Тур.	Max.	Unit	Conditions	Measuremen Circuit
Operating vol	tage	Vcc	4.5	-	13.0	v		Fig.1
Circuit current		lcc		9.5	14.5	mA		Fig.1
Maximum output level		Vom	3.0	3.5	_	VP-P	f=1kHz, THD=0.5%	Fig.1
Voltage gain		Gv	-0.5	0	0.5	dB	f=1MHz, Vin=1.0VP-P	Fig.1
Interchannel IN - IN		Стіп		-65		dB	f=4.43MHz, Vin=1.0VP-P	Fig.1
crosstalk	IN - MUTE	Стт		-55		dB	f=4.43MHz, Vin=1.0VP-P	Fig.1
Frequency ch	aracteristic	Cı	-3.0	0	1.0	dB	f=10MHz / 1MHz, Vin=1.0VP-P	Fig.1
Total-harmon	ic distortion	THD	-	0.007		%	f=1kHz, Vin=1.0VP-P	Fig.1
Input impedar	nce	Zin	14	20	26	kΩ		Fig.1
CTL pin switching level A		VTH-A	1.0	2.0	3.0	V		Fig.1
CTL pin switching level B		V тн-в	1.0	2.0	3.0	V		Fig.1
CTL pin switc	hing level C	Vтн-с	1.0	2.0	3.0	V		Fig.1

Not designed for radiation resistant.

Measurement circuit

620

rohm

Fig.1

Measurement conditions

Parameter		Cumbal	Symbol Switch settings							
		Symbol	SW1	SW2	SW₃	S₩₄	SW5	SW6	SW7	Measurement method
Current consum	ption	lee	2	2	2	2	2	2	2	Ammeter
Maximum output level	IN 1 IN 2 IN 3 IN 4	Vom Vom Vom Vom	1 2 2 2	2 1 2 2	2 2 1 2	2 2 2 1	3 3 2 2	3 2 3 2	3 3 3 3	f=1kHz, THD=0.5% Note 1
Voltage gain	IN1 IN2 IN3 IN4	Gv Gv Gv Gv	1 2 2 2	2 1 2 2	2 2 1 2	2 2 2 1	3 3 2 2	3 2 3 2	3 3 3 3	f=1MHz, Vin=1VP-P Note 2
Interchannel crosstalk	$\begin{array}{c} N1 \rightarrow N2 \\ N1 \rightarrow N3 \\ N1 \rightarrow N4 \\ N1 \rightarrow MUTE \\ N2 \rightarrow N4 \\ N2 \rightarrow IN4 \\ N3 \rightarrow IN4 \\ N3 \rightarrow MUTE \\ N4 $	ひひひひひひひひひ	1 1 1 2 2 2 2 2 2 2	2 2 2 1 1 1 2 2 2 2	2 2 2 2 2 2 2 2 2 2 1 1 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1	322*22*	2 3 2 * 3 2 * 2 * * * * * * *	3 3 2 3 2 3 2 3 2 2 2	f≔4.43MHz, Vin≕1Vթ.թ Note 3
Frequency characteristic	IN 1 IN 2 IN 3 IN 4	Gi Gi Gi	1 2 2 2	2 1 2 2	2 2 1 2	2 2 2 1	3 3 2 2	3 2 3 2	3 3 3 3	f=10MHz / f=1MHz Vh=1Vp.p Note 4
Total-harmonic distortion	IN 1 IN 2 IN 3 IN 4	THD THD THD THD THD	1 2 2 2	2 1 2 2	2 2 1 2	2 2 2 1	3 3 2 2	3 2 3 2	3 3 3 3	f=1kHz Vin=1VP-P Note 5
Input impedance	IN 1 IN 2 IN 3 IN 4	Zin Zin Zin Zin	3 2 2 2	2 3 2 2	2 2 3 2	2 2 2 3	3 3 2 2	3 2 3 2	3 3 3 3	Note 6
CTL pin switching level	CTL - A CTL - B CTL - C	∨тн ∨тн ∨тн	2 2 1	2 1 2	1 2 2	2 2 2	1 3 3	3 1 3	3 3 1	Note 7 Note 8

* Anywhere possible.

Note 1: Connect a distortion meter to the output, and input a f = 1kHz sine wave. Adjust the input level until the output distortion is 0.5%. This output voltage at this time is the maximum output level Vom (VP-P).

voltage at this time is the maximum output level Vom (VP-P). Note 2: Input a 1VP-P, 1MHz sine wave. The voltage gain is given by GV = 20 log (VouT/ViN). Note 3: Input a 1VP-P, 4.43MHz sine wave. The interchannel crosstalk is given by CT = 20 log (VouT/ViN). Note 4: Input 1 VP-P, 1MHz and 10MHz sine waves. The frequency characteristic is given by Gt = 20 log (VouT (f = 10MHz)/ViN (f = 1MHz)). Note 5: Input a 1 VP-P, 1MHz and 10MHz sine waves. The frequency characteristic is given by Gt = 20 log (VouT (f = 10MHz)/ViN (f = 1MHz)). Note 5: Input a 1 VP-P, 1MHz sine wave and measure the total-harmonic distortion of the output using a total-harmonic distortion meter. Note 6: Measure the input pin voltage Vin50 when a current of DC50 µ A is flowing into the input pin. Measure the input pin open-circuit voltage. The input impedance is given by Z = (Vinso, - Vini/S0 x 10⁶ Q impedance is given by Z = (VIN50 - VIN0)/50 x 10⁻⁶ Ω. Note 7: Input a 1VP-P, 1MHz sine wave. Reduce the CTL pin voltage from Vcc. The CTL pin switching level (VTH) is the CTL pin voltage at which the Vout

level drops below 20mVP-P. Note 9: Input a 1VP-9, 1MHz sine wave, Increase the CTL pin voltage from 0V. The CTL pin switching level (VTH) is the CTL pin voltage at which the Vour level goes above 1.0VP-P.

Audio/video signal selection switches

AV switches

2 3 4 5 6

-4L_____ 100k 300k

1M 3M 10M FREQUENCY : 1 (Hz)

Fig. 3 Frequency characteristic

10

8 9

10M 30M

Fig. 4 Interchannel crosstalk characteristics

External dimensions (Units: mm)

INPUT VOLTAGE : Vin (VP.P)

Fig. 2 Vin vs. Vout characteristics (f = 1kHz)

622

ROHM

Notes

- The contents described in this catalogue are correct as of March 1997.
- No unauthorized transmission or reproduction of this book, either in whole or in part, is permitted.
- The contents of this book are subject to change without notice. Always verify before use that the contents are the latest specifications. If, by any chance, a defect should arise in the equipment as a result of use without verification of the specifications, ROHM CO., LTD., can bear no responsibility whatsoever.
- Application circuit diagrams and circuit constants contained in this data book are shown as examples of standard use and operation. When designing for mass production, please pay careful attention to peripheral conditions.
- Any and all data, including, but not limited to application circuit diagrams, information, and various data, described in this catalogue are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO., LTD., disclaims any warranty that any use of such device shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes absolutely no liability in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices; other than for the buyer's right to use such devices itself, resell or otherwise dispose of the same; no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD., is granted to any such buyer.
- The products in this manual are manufactured with silicon as the main material.
- The products in this manual are not of radiation resistant design.

The products listed in this catalogue are designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers, or other safety devices) please be sure to consult with our sales representatives in advance.

- Notes when exporting
 - It is essential to obtain export permission when exporting any of the above products when it falls under the category of strategic material (or labor) as determined by foreign exchange or foreign trade control laws.
 - Please be sure to consult with our sales representatives to ascertain whether any product is classified as a strategic material.