VCR Hi-Fi audio signal REC / PB amplifier with flying-erase oscillator BA7745FS

The BA7745FS has the recording and playback amplifiers required for Hi-Fi VCR signal processing, and also contains a flying-erase oscillator. The recording system uses a constant-current amplifeir with AGC to eliminate the need to adjust the recording current, and ensure stable operation as the head wears. The IC also features REC MUTE and OVER REC functions.

The playback system has a high-gain preamplifier, a low-offset head switch, a VCA and an EP-gain amplifier. The flying-erase oscillator has low 2nd and 3rd harmonic distortion, and when connected to an external driver large output current can be obtained.

A H / L control system eliminates the need for special power supplies for the recording and playback systems. The IC has low power consumption, and comes in a compact 32-pin SSOP-P package that requires little area on the PCB. It will improve the reliability and performance of your designs while reducing external component requirements.

Applications
VCRs

Features

The low-noise playback amplifier has a total gain of 83dB (Typ.). Designed for VHS-bandoperation with low external parts count. It has two built-in circuits for Hi-Fi VCR operation.

- The circuit has been designed to suppress headswitching noise.
- Built-in EP / SP gain switching function that boosts the playback gain by 5dB.
- 4) Built-in VCA for easy playback output adjustment.
- High-output recording amplifier for audio FM recording.
- 6) Constant-current drive provides stable recording characteristics when the load (head impedance) is fluctuating.

- Built-in recording level AGC eliminates the need to adjust recording current.
- Built-in low-pass filter limits the input bandwidth of the recording amplifier.
- Built-in OVER REC recording current amplifier function and REC MUTE function that stops recording output.
- Built-in high-frequency oscillator for use with flying erase function.
- 11) Record / playback switching can be done directly via the system controller, and consumes litlle power.
- Possible to construct a high-performance audio system by pairing this chip with a Hi-Fi-audio signal processing IC.

Block diagram

Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limits		Unit	
Power supply voltage	Vcc	PB / REC system	7.0	V	
Fower supply voltage	VCC	FE system 12.5		v	
Power dissipation	Pd	1000*		mW	
Operating temperature	Topr	- 10 ~ + 70		°C	
Storage temperature	Tstg	- 55 ~ + 125		°C	

* When mounted on a 90mm \times 50mm \times 1.6mm glass epoxy board, reduced by 10mW for each increase in Ta of 1°C over 25°C.

• Recommended operating conditions (Ta = 25° C)

Paramete	Symbol	Min.	Тур.	Max.	Unit	
Recommended	PB / REC system	Vccs	4.5	5.0	5.5	V
operating voltage	FE system		10.5	11.0	11.5	V

Electrical characteristics

Recording system (unless otherwise noted, Ta = 25° C, Vcc = 5V, and f = 1.7MHz)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
(Recording mode)						17pin: H
Quiescent current	lq (REC)	-	66	90	mA	No signal, pin 12 + pin 29, inflow current
Output current AGC level	IOAR	44.7	48.2	51.7	mA _{P-P}	15pin 93.0dBμIN, 19pin OUT
Output current AGC range	Δ Ioar	10	13	-	dB	∆AGC < 0.8dB, 19pin OUT
Cross modulation distortion 0.4MHz component	CMD ₀₄	-	- 50	- 43	dB	15pin MIXIN (*), 19pin OUT (0.4MHz – 1.3MHz)
Cross modulation distortion 0.9MHz component	CMD ₀₉	-	- 55	- 40	dB	15pin MIXIN (*), 19pin OUT (0.9MHz – 1.3MHz)
2nd-harmonic distortion 2.6MHz component	2HD ₂₆	-	- 47	- 40	dB	15pin MIXIN (*), 19pin OUT (2.6MHz – 1.3MHz)
Cross modulation distortion 3.0MHz component	CMD ₃₀	-	- 42	- 35	dB	15pin MIXIN (*), 19pin OUT (3.0MHz – 1.3MHz)
2nd-harmonic distortion 3.4MHz component	2HD34	-	- 45	- 40	dB	15pin MIXIN (*), 19pin OUT (3.4MHz – 1.7MHz)
OVER REC holding voltage	V14L	0.0	-	2.2	V	When 14pin DC, NORMAL REC
OVER REC holding voltage	V14H	3.5	-	Vcc	V	When 14pin DC, OVER REC
Current emphasis OVER	lor.ov	+ 1.4	+ 1.9	+ 2.4	dB	15pin 93.0dBμIN, 14pin: "H"
REC MUTE holding voltage	V13L	0.0	_	2.2	V	When 13pin DC, MUTE OFF
REC MUTE holding voltage	V13H	3.5	-	Vcc	V	When 13pin DC, MUTE ON
Mute attenuation	IOR.MU	—	- 45	- 40	dB	15pin 93.0dBμIN, 13pin: "H"

* f = 1.3MHz (89.0dB μ) + 1.7MHz (97.0dB μ) (MIX)

Playback system (unless otherwise noted, Ta = 25° C, Vcc = 5V, and f = 1.5MHz)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
(Playback mode)	-7		71			17pin: "L" 11pin: 2.0V
Supply current	Iq (PB)	_	19.0	31.0	mA	Inflow current to pin 12 when no signal.
Voltage gain CH1	GVP1	80	83	86	dB	23pin, 20.5dBµIN, 10pin OUT, 8pin: "H"
Voltage gain CH2	GVP2	80	83	86	dB	25pin, 20.5dBµIN, 10pin OUT, 8pin: "L"
Voltage gain differential	ΔG_{VP}	- 2.0	0	+ 2.0	dB	23pin, 25pin, 20.5dBµIN, ∆10pin OUT
CH1 to CH2 crosstalk	CT1→2	_	- 40	- 35	dB	23pin 31.0dBμ, 25pin 0 IN, 8pin: "H" → "L", Δ10pin OUT
CH2 to CH1 crosstalk	$CT_{2\rightarrow 1}$	_	- 40	- 35	dB	23pin 0, 25pin 31.0dBµlN, 8pin: "H" \rightarrow "L", Δ 10pin OUT
CH1 frequency characteristic	f _{P1}	0	- 2.4	- 5	dB	23pin 20.5dBμIN, 8pin: "H" f = 2.2MHz / 1.0MHz, Δ10pin OUT
CH2 frequency characteristic	fP2	0	- 2.4	- 5	dB	25pin 20.5dBμIN, 8pin: "L" f = 2.2MHz / 1.0MHz, Δ10pin OUT
Gain adjustment headroom	$-\Delta G$ VCA	-	- 40	- 30	dB	11pin 2.0V→3.3V, ∆10pin OUT
Gain adjustment headroom	+ ΔG_{VCA}	+ 4	+ 6	-	dB	11pin 2.0V→0.8V, ∆10pin OUT
Maximum output voltage	Vomp	2.0	2.6	-	Vp-p	Pin 23 and 25 IN, pin 10 OUT 3rd-harmonic distortion, when -30dB.
CH1 input conversion noise	VNP1	_	0.4	1.0	μVrms	Input conversion for pin 23: 0.01μ F + 10Ω at GND Pin 8: "H", pin 10 OUT.
CH2 input conversion noise	VNP2	_	0.4	1.0	μVrms	Input conversion for pin 25: $0.01\mu F + 10\Omega$ at GND Pin 8: "L", pin 10 OUT.
Head switch voltage	VHS2	0.0	_	2.2	V	Pin 8 DC when CH2 operating
Head switch voltage	VHS1	2.8	_	Vcc	V	Pin 8 DC when CH1 operating
Output DC offset	ΔV odc	- 20	0	+ 20	mV	23, 25pin 0 IN, 8pin: "H" → "L", ∆10pin OUT
PB holding voltage	V17L	0.0	_	1.0	V	Pin 17 DC for PB mode
REC holding voltage	V17H	3.5	_	Vcc	V	Pin 17 DC for REC mode
Head switch-on resistance	Rswp	_	5	10	Ω	Pin 20 ON resistance
SP holding voltage	V9L	0.0	_	2.2	V	Pin 9 DC for SP mode
EP holding voltage	V9н	3.5	_	Vcc	V	Pin 9 DC for EP mode
Gain emphasis EP	GVP. EP	4.0	5.0	6.0	dB	23, 25pin 20.5dBµIN, 9pin: "H", 10pin OUT

Design reference values

Flying erase system (unless otherwise noted, $Ta = 25^{\circ}C$, Vcc = 11.0V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
(Flying erase mode)	5pin: "H"					
Supply current	lq (fe)	_	12.0	—	mA	Pin 31 inflow current
Pin 2 voltage	V2	_	5.5	_	V	2pin DC
Pin 3 voltage	V ₃	_	5.5	_	V	3pin DC
Pin 6 voltage	V ₆	_	1.0	_	V	6pin DC
Pin 32 voltage	V32	_	4.3	_	V	32pin DC
Oscillator frequency range	f32	8	_	13	MHz	32pin OUT
Output amplitude range	U 32	_	2.8		Vp-p	32pin OUT
FE ON holding voltage	V _{5H}	4.0	_	Vcc	V	5pin DC, When FE ON
FE OFF holding voltage	V _{5L}	0	_	0.5	V	5pin DC, When FE OFF

* The values given above are design values, they are not ratings and are not guaranteed.

Measurement circuit

Control mode tables

(1) REC / PB control

Switch between REC and PB using pin 17.

Control pin	Mode		F	unction	
REC / PB	Widde	REC AMP	PRE AMP	REC + B SW	HEAD SW (P)
Н	REC	ON	OFF	ON	OFF
L	РВ	OFF	ON	OFF	ON

(2) OVER REC control

Control for OVER REC (current emphasis) is done using pin 14. When in OVER REC mode, the gain setting is recording amplifier AGC level + 1.9dB.

Control pin	Mode	Function
OVER REC	Mode	REC AGE Level
Н	OVER REC	60.0mA _{P-P}
L	_	48.2mA _{P-P}

(3) REC MUTE control

Control for REC MUTE when recording is done using pin 13.

Control pin	Mode	Function
REC MUTE	Mode	REC AMP
Н	REC MUTE	OFF
L	—	ON

(4) EP / SP control

EP / SP control during playback is done using pin 9. When EP is selected, the gain of the playback amplifier is increased by 5dB over its normal setting.

Control pin	Mode	Function
EP / SP	Mode	PRE AMP gain
Н	EP	Typ. + 5dB
L	SP	Тур.

Application example

Fig. 2

•External dimensions (Units: mm)

