PWM Driver for CD and MD Players BH6504K

The BH6504K is a 4-channel PWM driver designed for CD and MD player motors and actuator drives. The power MOFSET output stage allows for applications with low power consumption. This IC also has a charge pump circuit and standard operational amplifier (needed for power MOSFET gate drives), and so supports a wide spectrum of applications.

Applications

Portable CD players, MD players

Features

- 1) Low power consumption.
- 2) A minimum of attached components.
- 3) Excellent gain precision because of the voltage feedback circuit.
- 4) Internal mute function for channel 1.
- 5) Allows for free-running and clock synchronization operation.
- 6) Internal standard operational amplifier.
- 7) Internal charge pump circuit for gate drive.
- 8) Switchable to doubled clock synchronization.

●Absolute maximum ratings (Ta=25℃)

Parameter	Symbol	Limits	Unit
H bridge supply voltage	Battery	7	V
Control circuit supply voltage	Pre · Vcc	7	v
Predriver supply voltage	VG (18pin)	7	v
Driver output current	lo	500	mA
Power dissipation	Pd	500*1	mW
Operating temperature	Торг	-30~85	Ċ
Storage temperature	. Tstg		ъ

*1 Reduced by 5.0 mW for each increase in Ta of 1°C over 25°C.

Recommended operating conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit
H bridge supply voltage	Battery	1.6	2.4	4.5	V
Control circuit supply voltage	Pre · Vcc	2.7	3.0	4.5	V ·
Predriver supply voltage*2	VG(18pin)	Battery +1.6	6.5	6.9	v
Ambient temperature	Та	-10	25	70	Ĉ

*2 When supplied from an external source without using the internal DC/DC converter

Block diagram

BH6504	ŀΚ

ŝ
Disc
itical
ő

Pin No.	Pin name	Function
1	CO3	Channel 3 voltage feedback filter
2	BATT3	Power supply input
Э	OUT 3F	Channel 3 positive output
4	POWGND	Power supply ground
5	OUT 3R	Channel 3 negative output
6	BATT34	Power supply input
7	OUT 4F	Channel 4 positive output
8	POWGND	Power supply ground
9	OUT 4R	Channel 4 negative output
10	BATT4	Power supply input
11	CO4	Channel 4 voltage feedback filter
12	D.GND	Predrive circuit supply ground
13	ESP	Double-speed detection circuit
14	PC	All-driver output mute
15	СТ	Triangular wave output
16	RT	Charge current setting
17	CLK	External clock synchronization input
18	VG	Predrive circuit supply input
19	LG	Attached DC/DC converter connection
20	CN1	Channel 1 phase compensation filter
21	CN2	Channel 2 phase compensation filter
22	CH1MUTE	Channel 1 mute

		· · · · · · · · · · · · · · · · · · ·	
Pin No.	Pin name	Function	
23	CO2	Channel 2 voltage feedback filter	
24	BATT2	Power supply input	
25	OUT 2R	Channel 2 negative output	_
26	POWGND	Power supply ground	
27	OUT 2F	Channel 2 positive output	
28	BATT12	Power supply input	
29	OUT 1R	Channel 1 negative output	
30	POWGND	Power supply ground	
31	OUT 1F	Channel 1 positive output	
32	BATT1	Power supply input	-
33	CO1	Channel 1 voltage feedback filter	100
34	OP-	Negative input of the operational amplifier	40
35	OP OUT	Operational amplifier output	
36	PreVcc	Control circuit supply input	
37	ERR2	Channel 2 control signal input	
38	ERR1	Channel 1 control signal input	Č
39	vc	Reference voltage input	Ç c
40	ERR3	Channel 3 control signal input	C
41	ERR4	Channel 4 control signal input	
42	CN4	Channel 4 phase compensation filter	
43	CN3	Channel 3 phase compensation filter	-
44	PreGND	Control circuit supply ground	Č
	<u> </u>		ģ

Note: "Driver positive output" and "driver negative output" indicate polarity relative to the input pin.

ROHM

BH6504K

Pin name	Pin No.	Pin equivalent circuit
CO3 BATT3 OUT_3F POWGND OUT_3R BATT34	1 2 3 4 5 6	$\begin{array}{c} 2 \\ \hline \\$
OUT_4F POWGND OUT_4R BATT4 CO4	7 8 9 10 11	$ \begin{array}{c} $
D.GND	12	Predriver circuit ground pin
ESP	13	→ Pre. Vcc 30k 13 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
PC .	14	Pre. Vcc 30k ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

224

ROHM

Optical Disc ICs BH6504K **Optical disc ICs** Pin name Pin No. Pin equivalent circuit PRE.Vcc 36 Control circuit power supply pin ERR2 37 Pre. Vcc 10k 37 CD/CD-ROM Drivers (4 channels) ERR1 ERR3 ERR4 38 40 41 --- Pre. Vcc 25k 38 40 41 VC 39 - Pre. Vcc For CDs/CD-ROMs ×4 39 \overline{m} PREGND 44 Control circuit ground pin

ROHM

	Parameter	Symbol	Min.	Тур.	Max.	Unit		Conditions
Stand	by current	Isr		—	3	μA	Pre.VCC=	OFF
Quies	cent current	lcc1		4.5	9	mA	Including DC/DC converter coil cu	
Opera	ting current	Icc2		7	14	mA	4-channel o Including D	lrive C/DC converter coil current
PWM	driver							
	Output-on resistance	Ron	-	1.3	2.0	Ω	Sum of top	and bottom on-resistance
CH1	Input offset voltage	Voi	-5	0	5	mV		
СНЗ	Output offset voltage	Voo	-35	0	35	mV		
CH4	Voltage gain	Gvc14	8.0	10.0	12.0	dB		
	Pos./neg. voltage gain differential	Gvc	-1.5	0	1.5	dB		
	Output ON resistance	Ron		1.3	2.0	Ω	Sum of top	and bottom ON resistance
	Input offset voltage	Voi	-5	0	5	mV		· · · · ·
CH2	Output offset voltage	Voo	35	0	35	mV		
	Voltage gain	Gvc14	18.0	20.0	22.0	dB	-	
	Pos./neg. voltage gain differential	Gvc	-1.5	0	1.5	dB		
DC/DC	Converter * 1							
Outpu	t voltage	VG	6.1	6.5	6.9	v		
Triang	ular wave generator							
Free-r	unning oscillation frequency 1	fosci	_	140	-	kHz		
Synchronization signal input frequency 11		fclK11	75	88	100	kHz	ESP= 'H'] RT=39kΩ, CT=220pF
Synch	ronization signal input frequency 12	folkia.	150	176	200	kHz	ESP= 'L'	
Free-r	unning oscillation frequency 2	fosc2	-	60		kHz		
Synch	ronization signal input frequency 21	fcLk21	38	44	50	kHz	ESP= 'H'	RT=39kΩ, CT=470pF
Synch	ronization signal input frequency 22	folkes:	75	88	100	kHz	ESP= 'L'	
Opera	tional amplifier							·
Input k	pias current	IBIAS	—		300	nA		
Input c	offset voltage	VOIOF	-5.5	0	5.5	mV		
Output	voltage, high level	Vонор	2.8	_	-	v	RL=OPEN	
Output	voltage, low level	Volor	_		0.2	V	RL=OPEN	
Output	drive current (source)	lsou	0.3	0.5	-	mA	50 Ω at GN	D
Outpu	t drive current (sink)	Isin	1	3	_	mA	50Ω at V _{CC}	
Open	oop voltage gain	Gvo		70	—	dB	Vin=-75d	BV, f=1kHz
Slew r	ate	SR	-	0.5	_	V/µs		
Contro	l pin threshold							
MUTE	1-ON level input voltage	VMTON	2.2			v		
MUTE	1-OFF level input voltage	VMTOFF	-	_	0.5	v		
PC-ON	I level input voltage	VPCON	2,2	_	-	٧		
PC-OF	F level input voltage	VPCOFF	-	_	0.5	v		
ESP-C	N level input voltage	VESPON	2.2	_	_	v		
ESP-C	PFF level input voltage	VESPORE		_	0.5	V.		

ONot designed for radiation resistance.
 *1 DC/DC converter circuit:

Pre.Vcc is raised to 6.5 V by attaching an inductance, Schottky barrier diode, and capacitor. This voltage is the power supply (VG) for the predriver circuit.

228

ikohim

rohm

Measurement circuit switch tables

Parameter	VERR	łN	RL	Notes	Measurement point
ls⊤	OFF	OFF	OFF	Pre.Vcc=Vc=OPEN, Battery=2.4V	lapow
Icc1	OFF	OFF	OFF		Іаря
lccz	±0.5∨	ON	OFF	Simultaneous 4-channel input	Іоря

$\langle \mathsf{PWM} \ \mathsf{driver} \rangle$

Parameter	VERR	IN	RL	Notes	Measurement point
Ron1~4	±1.5V	ON	ON	$R_{ON} = \frac{(Battery - V_01 \sim 4) \times RL}{V_01 \sim 4}$	Vo1~4
Voi	OFF	OFF	ON		Vo1~4、ViN
Voo	0V	ON ¹	ON		Vo1~4
Gvc1~4	±0.1 ∼0.2	ON	ON	$G_{v}=20\log\left \frac{V_{0}1\sim4}{0.1}\right $	Vin
Gvc	_	_	_	Difference between Gvc+ and Gvc-	

 $\langle DC/DC \text{ converter} \rangle$

Parameter	VERR	IN	RL	Notes	Measurement point
Vg	OFF	OFF	OFF		Vg

$\langle { m Triangular\,wave\,generator} angle$

1

Parameter	VERR	IN	RL	Notes	Measurement point
fosci	OFF	OFF	OFF	No clock input, CT = 220 pF, verify triangular waveform	Pin 15 waveform
folk11	OFF	OFF	OFF	Clock = 38 kHz, CT = 220 pF, verify clock synchronization of triangular wave	Pin 15 waveform
fc⊾ĸ12	OFF	OFF	OFF	Clock = 176 kHz, CT = 220 pF, verify clock synchronization of triangular wave	Pin 15 waveform
fosc2	OFF	OFF	OFF	No clock input, CT = 470 pF, verify triangular waveform	Pin 15 waveform
fclk21	OFF	OFF	OFF	Clock = 44 kHz, CT = 470 pF, verify clock synchronization of triangular wave	Pin 15 waveform
fclk22	OFF	OFF	OFF	Clock = 38 kHz, CT = 470 pF, verify clock synchronization of triangular wave	Pin 15 waveform

 $\langle {
m Control \, pin \, threshold}
angle$

Parameter	Verr	IN	RL	Notes	Measurement point
Vmt	±0.5V	ON	ON	Verify: No output from Vo1 at VMT = 2.2 V	Vo1
VPC	±0.5V	ON	ON	Verify: No output from Vo1 through Vo4 at VPc = 2.2 V	Vo1~4
VESP	OFF	OFF	OFF	Verify: VESP = 2.2 V, pin 15 waveform is double the clock frequency	

230

ROHM

Т

BH6504K

Optical Disc ICs

$\langle {\sf Operational amplifier} angle$					
Parameter	VOP	OPIN	RLOF		

Parameter	VOP	OPIN	RLOP	Notes	Measurement point	Optica
Ibias	OFF	2	OFF	$Rf=1M\Omega, I_{BLAS}=\left \frac{VRf}{1M\Omega}\right $	VRF .	Ê
VIDOP	OFF	2	OFF	Rf=0Ω	Vio	
Vонор	0V	2	OFF	Rf=30kΩ	VOOP1	
VOLOP	3V -	2	OFF	Rf=30kΩ	V00P1	
lsou	OFF	2	GND	$Rf=0\Omega,\ Isou=\left \frac{Voop}{50\Omega}\right $	Voop1	
ไรเท	OFF	2	PreVCC	$Rf=0\Omega,\ Isin=\frac{Pre.Vcc-Voop}{50\Omega}$	VOOP1	
Gvo	_	1	OFF	Rf=OPEN, Gvo=20log	V00P2	
SR	_	1	OFF	Rf = 30 kΩ, input pulse wave = 0.5 Vp-p	Pin 35 waveform	els)
Circuit op (1) PWM of This is an H output stag proportion t and to the a en by the so	lriver bridge dri e. Output o the input bsolute val	polarity an differential lue. The loa	d PWM du voltage be d is direct-F	ty vary in ween V _C , WM-driv-		CD/CD-ROM Drivers (4 channels)

Circuit operation

(1) PWM driver

This is an H bridge driver with four N-type FETs in the output stage. Output polarity and PWM duty vary in proportion to the input differential voltage between Ve, and to the absolute value. The load is direct-PWM-driven by the square wave with this varying duty. This is a voltage feedback driver and so delivers a constant gain regardless of battery voltage variation.

(2) DC/DC converter

The DC/DC converter that generates the voltage needed to drive the FETs of the output-stage H bridge. Pre.Vcc is raised to 6.5V by attaching an inductance, Schottky barrier diode, and capacitor.

(3) Triangular wave generator

1) Free-running oscillation

The free-running oscillation frequency of the triangular waves can be set with an attached resistor (Rt, between pin 16 and the ground) and capacitor (Ct, between pin 15 and the ground). The triangular wave has an amplitude of 3/5×Pre.Vcc at the top and Vr (approximately 0.7V) at the bottom. The ratio between rise time and fall time is 3 1. Free-running frequency (ft) is determined with the following equation :

Pre. Vcc Vr=0.7V

The triangular waveform during free-running oscillation

rohm

231

For CDs/CD-ROMs

2) Clock synchronization

The triangular wave can be synchronized by inputting to the CLK pin (pin17) a pulse wave equal to 0-Pre.Vcc (Vp-p). The following precautions should be kept in mind :

• The amplitude of the triangular wave decreases as the clock frequency rises.

ESP= "L"

• The PWM driver is a voltage feedback driver, which should preclude any problems unless the setting is such that the triangular wave has an extremely small amplitude.

• As mentioned above, a capacitor and resistor are also required during clock synchronization.

ESP= "H"

Clock synchronous triangle waveform

3) Using the ESP pin

1 To operate the PWM driver at 176.4kHz

Mode	Clock input frequency	ESP input voltage	Driver operating frequency
Normal	88.2kHz	'H'	176.4kHz
Double speed	176.4kHz	'L'	176.4kHz

2 To operate the PWM driver at 88.2kHz

Mode	Clock input frequency	ESP input voltage	Driver operating frequency
Normal	44.1kHz	ʻH'	88.2kHz
Double speed	88.2kHz	'L'	88.2kHz

232

rohm

Fig. 2

ROHM

Operation notes

Attach a bypass capacitor (roughly 1 μ F) to the power supply, at the base of the IC.

Electrical characteristic curves

234

rohm

External dimensions (Units: mm)

BH6504K

Optical Disc ICs

CD/CD-ROM Drivers (4 channels)

For CDs/CD-ROMs

Fo

ROHM

Notes

- The contents described in this catalogue are correct as of March 1997.
- No unauthorized transmission or reproduction of this book, either in whole or in part, is permitted.
- The contents of this book are subject to change without notice. Always verify before use that the contents are the latest specifications. If, by any chance, a defect should arise in the equipment as a result of use without verification of the specifications, ROHM CO., LTD., can bear no responsibility whatsoever.
- Application circuit diagrams and circuit constants contained in this data book are shown as examples of standard use and operation. When designing for mass production, please pay careful attention to peripheral conditions.
- Any and all data, including, but not limited to application circuit diagrams, information, and various data, described in this catalogue are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO., LTD., disclaims any warranty that any use of such device shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes absolutely no liability in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices; other than for the buyer's right to use such devices itself, resell or otherwise dispose of the same; no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD., is granted to any such buyer.
- The products in this manual are manufactured with silicon as the main material.
- The products in this manual are not of radiation resistant design.

The products listed in this catalogue are designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers, or other safety devices) please be sure to consult with our sales representatives in advance.

- Notes when exporting
 - It is essential to obtain export permission when exporting any of the above products when it falls under the category of strategic material (or labor) as determined by foreign exchange or foreign trade control laws.
 - Please be sure to consult with our sales representatives to ascertain whether any product is classified as a strategic material.