Optical disc ICs

PWM Driver for CD and MD Players BH6505K

The BH6505K is a 4-channel PWM driver designed for CD and MD player motor and actuator drives. The power MOSFET output stage allows for applications with low power consumption. This IC also has a charge pump circuit and standard operational amplifier (needed for power MOSFET gate drives), and so supports a wide spectrum of applications.

Applications

Portable CD players, MD players

Features

- 1) Low power consumption.
- 2) A minimum of attached components.
- Good gain precision because of the voltage feedback circuit.
- 4) Internal mute function for channels 1 and 2.
- 5) Allows for free-running and clock synchronization operation.
- 6) Internal standard operational amplifier.
- 7) Internal charge pump circuit for gate drive.

●Absolute maximum ratings (Ta=25℃)

Parameter	Symbol	Limits	Unit
H bridge supply voltage	BATTERY	TERY 7	
Control circuit supply voltage	Pre • Vcc	7	V
Predriver supply voltage	VG (18pin)	7	v
Driver output current	lo	500	mA
Power dissipation	Pd	500 * ¹	mW
Operating temperature	Topr		ĉ
Storage temperature	Tstg	-55~125	ĉ

*1 Reduced by 5.0 mW for each increase in Ta of 1°C over 25°C.

Recommended operating conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit
H bridge supply voltage	BATTERY	1.6	2.4	4.5	V
Control circuit supply voltage	Pre · Vcc	2.7	3.0	4.5	V
Predriver supply voltage*2	VG (18pin)	BATTERY +1.6	6.5	6.9	v
Ambient temperature	Ta .	-10	25	70	ĉ

*2 When voltage is supplied externally without using an internal DC/DC converter.

237

BH6505K

Pin descriptions

Pin No.	Pin name	Function
1	CO3	Channel 3 voltage feedback filter
2	BATT3	Power amplifier power supply input
3	OUT 3F	Channel 3 positive output
4	POWGND	Power amplifier power supply ground
5	OUT 3R	Channel 3 negative output
6	BATT34	Power amplifier power supply input
7	OUT 4F	Channel 4 positive output
8	POWGND	Power amplifier power supply ground
9	OUT 4R	Channel 4 negative output
10	BATT 4	Power amplifier power supply input
11	CO4	Channel 4 voltage feedback filter
12	D.GND	Predrive circuit power supply ground
13	MUTE2	Channel 2 mute
14	PC	All-driver output mute
15	СТ	Triangular wave output
16	RT	Setting the charging current
17	CLK	Input for synchronizing the external clock
18	VG	Input of the predrive circuit power supply
19	LG	Attaching the DC/DC converter
20	CN1	Channel 1 phase compensation filter
21	CN2	Channel 2 phase compensation filter
22	MUTE1	Channel 1 mute

Pin No.	Pin name	Function
23	CO2	Channel 2 voltage feedback filter
24	BATT2	Power amplifier power supply input
25	OUT 2R	Channel 2 negative output
26	POWGND	Power amplifier power supply ground
27	OUT 2F	Channel 2 positive output
28	BATT12	Power amplifier power supply input
29	OUT 1R	Channel 1 negative output
30	POWGND	Power amplifier power supply ground
31	OUT 1F	Channel 1 positive output
32	BATT1	Power amplifier power supply input
33	CO1	Channel 1 voltage feedback filter
34	OP-	Operational amplifier negative input
35	OP OUT	Operational amplifier output
36	PreVcc	Input of the control circuit power supply
37	ERR2	Input of the channel 2 control signal
38	ERR1	Input of the channel 1 control signal
39	vc	Reference voltage input
40	ERR3	Input of the channel 3 control signal
41	ERR4	Input of the channel 4 control signal
42	CN4	Channel 4 phase compensation filter
43	CN3	Channel 3 phase compensation filter
44	PreGND	Ground for the control circuit power supply

Note: Driver "positive output" and "negative output" indicate polarity relative to the input pin

238

ROHM

,

Pin name	Pin No.	Pin equivalent circuit
PRE.Vcc	36	Control circuit power supply pin
ERR1 ERR2 ERR3 ERR4	38 37 40 41	TTPre. Vcc TFR.
VC (39	39 777 Pre. Vcc ×4 5k 5k
PREGND	44	Control circuit ground pin

242

• Electrical characteristics (unless otherwise noted, Ta=25°C, battery=2.4V, Pre.V_{cc}=3.0V, Vc=1.5V, f_{CLK}=176.4kHz, R_L=8 Ω -47 μ H)

Parameter		Symbol	Min.	Тур.	Max.	Unit	Conditions
Standby current		lsт			3	μA	Pre.Vcc=OFF
Quiescent current		lccı		4.5	9	mA	Including DC/DC converter coil current
Opera	ting current	lcc2	_	7	14	mA	4-channel drive Including DC/DC converter coil current
PWM	driver						
	Output-on resistance	Ron	_	1.3	2.0	Ω	Sum of top and bottom-on resistance
CH1	Input offset voltage	Voi	-5.0	0	5.0	mV	· · · · · · · · · · · · · · · · · · ·
CH2 CH3 CH4	Output offset voltage	Voo	-35	0	35	mV	
∪⊓4	Voltage gain	Gvc1-4	6.5	8.5	10.5	dB	· · · · · · · · · · · · · · · · · · ·
	Positive/negative voltage gain differ.	Gvc	-1.5	0	1.5	dB	
DC/DC	C converter*1						
Outpu	t voltage	VG	6.1	6.5	6.9	V	
Triang	jular wave generator						· · · · · · · · · · · · · · · · · · ·
Free-ri	unning oscill. frequency 1	fosc1	_	140	_	kHz	BT=30k0 0T-300-E
Synch. signal input frequency 1		fclkı	150	176	200	kHz	RT=39kΩ, CT=220pF
Free-running oscill. frequency 2		fosc2	_	60	<u> </u>	kHz	RT=39kΩ, CT=470pF
Synch	. signal input frequency 2	fclk2	78	88	98	kHz	
Opera	itional amplifier						
Inpút l	bias current	BIAS	-	-	300	nA	
Input c	offset voltage	VOIOP	-5.5	0	5.5	mV	
Output voltage, high level		Vонор	2.8		-	V	RL=OPEN
Output voltage, low level		Volop	_		0.2	V	RL=OPEN
Outpu	t drive current (source)	Isou	0.3	0.5		mA	50 Ωat GND
Outpu	it drive current (sink)	Isin	1	3	<u> </u>	mA	50Ωat Vcc
Open loop voltage gain		Gvo	_]	70		dB	Vin=-75dBV, f=1kHz
Slew rate		SR	_	0.5	_	V/µS	
Contro	ol pin threshold						
MUTE1-on level input voltage		VMT10N	2.2	_		V	Channel 1 muted at the high level
MUTE	1-off level input voltage		_	_	0.5	V	· · · · · · · · · · · · · · · · ·
MUTE	2-on level input voltage	VMT2ON	2.2			V	Channel 2 muted at the high level
MUTE	2-off level input voltage	VMT2OFF			0.5	v	
PC-on	n level input voltage	VPCON	2.2		_	v	All channels muted at the high level
 PC⊦ofi	f level input voltage	VPCOFF		_	0.5	v	

*1 DC / DC converter circuit

Pre.VCC is raised to 6.5 V by attaching an inductance, Schottky barrier diode, and capacitor. This voltage is the power supply (VG) for the predriver circuit. CD/CD-ROM Drivers (4 channels)

For CDs/CD-ROMs

Measurement circuit

Fig. 1

244

BH6505K

Optical disc ICs

Circuit operation

(1) PWM driver

This is an H bridge driver with four N-type FETs in the output stage. Output polarity and PWM duty vary in proportion to the input differential voltage between Vc, and to the absolute value. The load is direct-PWM-driven by the square wave with this varying duty.

This is a voltage feedback driver and so delivers a constant gain regardless of battery voltage variation.

(2) DC/DC converter

The DC / DC converter that generates the voltage needed to drive the FETs of the output-stage H bridge. Pre.Vcc is raised to 6.5V by attaching an inductance, Schottky barrier diode, and capacitor.

(3) Triangular wave generator

1) The free-running oscillation frequency of the triangular waves can be set with an attached resistor (Rt, between pin 16 and the ground) and capacitor (Ct, between pin 15 and the ground). The triangular wave has an amplitude of $3/5 \times Pre.Vcc$ at the top and VF (approximately 0.7V) at the bottom. The ratio between rise time and fall time is 3: 1. Free-running frequency (ft) is determined with the following equation:

Freerunning frequency triangular wave form

2) The triangular wave can be synchronized by inputting to the CLK pin (17 pin) a pulse wave equal to 0-Pre.Vcc (Vp-p). The following precautions should be kept in mind :

• The amplitude of the triangular wave decreases as the clock frequency rises.

• The PWM driver is a voltage feedback driver, which should preclude any problems unless the setting is such that the triangular wave has an extremely small amplitude.

 As mentioned above, a capacitor and resistor are also required during clock synchronization.

The triangular waveform during clock synchronization

Operation notes

Attach a bypass capacitor (roughly 1 μ F) to the power supply, at the base of the IC.

Rohm

Application circuit

Fig. 2

246

.

Electrical characteristic curves

Fig. 3 Driver I/O characteristics (variable load)

INPUT VOLTAGE : VIN (V)

Fig. 5 I/O characteristics (variable power supply)

External dimensions (Units: mm)

ROHM

INPUT VOLTAGE : VIN (mV)

Fig. 4 I/O characteristics near the dead zone (variable load)

For CDs/CD-ROMs

247

Notes

- The contents described in this catalogue are correct as of March 1997.
- No unauthorized transmission or reproduction of this book, either in whole or in part, is permitted.
- The contents of this book are subject to change without notice. Always verify before use that the contents are the latest specifications. If, by any chance, a defect should arise in the equipment as a result of use without verification of the specifications, ROHM CO., LTD., can bear no responsibility whatsoever.
- Application circuit diagrams and circuit constants contained in this data book are shown as examples of standard use and operation. When designing for mass production, please pay careful attention to peripheral conditions.
- Any and all data, including, but not limited to application circuit diagrams, information, and various data, described in this catalogue are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO., LTD., disclaims any warranty that any use of such device shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes absolutely no liability in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices; other than for the buyer's right to use such devices itself, resell or otherwise dispose of the same; no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD., is granted to any such buyer.
- The products in this manual are manufactured with silicon as the main material.
- The products in this manual are not of radiation resistant design.

The products listed in this catalogue are designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers, or other safety devices) please be sure to consult with our sales representatives in advance.

Notes when exporting

- It is essential to obtain export permission when exporting any of the above products when it falls under the category of strategic material (or labor) as determined by foreign exchange or foreign trade control laws.
- Please be sure to consult with our sales representatives to ascertain whether any product is classified as a strategic material.