Multimedia ICs

Digital NTSC Encoder BU1414AK

This IC converts digital RGB input to analog video signals in the NTSC format.

Applications

Video CDs (NTSC)

Features

- 1) Supports 13.5MHz input clocks, ideal for NTSC video CDs
- 2) Input signal is RGB 24-bit
- 3) Master system compatible

●Absolute maximum ratings (Ta=25℃)

Parameter	Symbol	Limits	Unit	
Power supply voltage	VDD, AVDD, DVDD	-0.5~7.0	v	
Input voltage	Vin	-0.5~VDD+0.5	v	
Storage temperature	Tstg	-55~150	ĉ	
Power dissipation	Pd	1375*1	mW	

*1 Reduced by 11 mW for each increase in Ta of 1°C over 25°C. When mounted to a 70 \times 70 \times 1.6 mm glass epoxy board.

* Does not represent guaranteed performance.

 $\ensuremath{\mathbb{O}}$ Not designed for radiation resistance.

Recommended operating conditions

Parameter	Symbol	Limits	Unit
Power supply voltage	VDD=AVDD=DVDD*	4.75~5.25	V
Input voltage, high level	Viн	2.1~VDD	V
Input voltage, low level	Vı∟	0~0.8	V
Analog input voltage	VAIN	0~AVpd	V
Operating temperature	Topr	-25~60	ĉ

* Use at $V_{DD} = AV_{DD} = DV_{DD}$

4) Three channels (NTSC, Y and C) are output via 9-bit, high-speed DAC (internal 75 Ω driver)

5) Single 5.0V power supply

Block diagram

.BU1414AK

Pin No.	Pin name	Function	Pin No.	Pin name	Function
1	BOSD	PULLDOWN TO GND	33	NC	,
2	GD0	GREEN DATA Bito (LSB)	34	NC	_
3	GD1	GREEN DATA Bit1	35	VREF	REFERENCE VOLTAGE (1.29V)
4	GD2	GREEN DATA Bit2	36	CGND	CHROMA OUTPUT GROUND
5	GD3	GREEN DATA Bit3	37	COUT	CHROMA OUTPUT
6	GD4	GREEN DATA Bit4	38	VGND	COMPOSITE OUTPUT GROUND
7	GD5	GREEN DATA Bit5	39	VOUT	COMPOSITE OUTPUT
8	GD6	GREEN DATA Bit6	40	AVSS	ANALOG (DAC, VREF) GROUND
9	GND	DIGITAL GROUND	41	NC	—
10	GD7	GREEN DATA Bit7 (MSB)	42	IR	REFERENCE RESISTOR (1.2k)
11	BD0	BLUE DATA Bito (LSB)	43	AVDD	ANALOG (DAC,REF) VDD
12	BD1	BLUE DATA Bit1	44	YGND	LUMINANCE OUTPUT GROUND
13	BD2	BLUE DATA Bit2	45	YOUT	LUMINANCE OUTPUT
14	BD3	BLUE DATA Bit3	46	NC	_
15	OSDSW	NORMALLY OPEN	47	NC	_
16	NC	—	48	YCOFF	DAC (YOUT,COUT) OFF
17	BD4	BLUE DATA Bit4	49	DVSS	DIGITAL (DAC_CTRL) GROUND
18	BD5	BLUE DATA Bit5	50	DVDD	DIGITAL (DAC_CTRL) VDD
19	BD6	BLUE DATA Bit6	51	BCLK	13.5MHz CLOCK INPUT
20	BD7	BLUE DATA Bit7 (MSB)	52	RSTB	LOGIC PART INITIAL RESET
21	GND	DIGITAL GROUND	53	TESUT0	NORMALLY PULLDOWN TO GND
22	DREQ	PULLDOWN TO GND	54	RD0	RED DATA Bito (LSB)
23	IMO	INPUT MODE SET Bit0	55	RD1	RED DATA Bit1
24	IM1	INPUT MODE SET Bit1	56	RD2	RED DATA Bit2
25	TEST1	NORMALLY PULLDOWN TO GND	57	ROSD	PULLDOWN TO GND
26	TEST2	NORMALLY PULLDOWN TO GND	58	RD3	RED DATA Bit3
27	VSY	V - SYNC OUTPUT FOR MPEG	59	RD4	RED DATA Bit4
28	HSY	H - SYNC OUTPUT FOR MPEG	60	RD5	RED DATA Bit5
29	PIXCLK	BCLK THROUGH OUTPUT	61	VDD	DIGITAL VDD
30	STRTB	FUNCTION START ENABLE	62	RD6	RED DATA Bit6
31	VDD	DIGITAL VDD	63	RD7	RED DATA Bit7
32	NC	_	64	GOSD	PULLDOWN TO GND

Digital NTSC/PAL encoders

Electrical characteristics (unless otherwise noted, Ta=25°C, VDD=AVDD = DVDD=5.0V, fBCLK=13.5MHz, load resistance=37.5Ω)

Parameter	Symbol	Min,	Тур.	Max.	Unit	Conditions
Clock frequency	fBCLK		13.5	-	MHz	
Burst frequency	fBST	-	3.5795	_	MHz	Subcarrier frequency
Burst cycle	CBST	-	9	-	CYC	
Operating circuit current	IDD		120.0	_	mA	
Output voltage, high level	VOH	4.2	4.6	-	V	IOH=-2.0mA
Output voltage, low level	VOL		0.4	0.8	v	IOL=2.0mA
Input voltage, high level	VIH	2.4	_	-	v	
Input voltage, low level	VIL	_	_	0.8	v	
Input current 1, high level	ІІН	- 1	1.0	10.0	μA	VIH=5.0V
Input current 1, low level	IIL	-10.0	0	_	μA	VIL=0.0V
DAC resolution	RES	-	9	_	BITS	
Differential linearity error	DNL	-	±1	-	LSB	Best straight line
Integral linearity error	INL		±3		LSB	Best straight line
Y white level current	IYW		25.14	_	mA	VREF=1.29V、IR=1.2kΩ
Y black level current	IYB		7.24	_	mA	VREF=1.29V、IR=1.2kΩ
Y zero level current	IYZ	-10.0	0.0	10.0	μA	

Circuit operation

(1) General

The BU1414AK converts 8-bit digital RGB image signals to television signal output comprising a 9-bit composite signal, luminosity signal (Y) and color signal (C) in the NTSC format.

RGB signal input is synchronized to the 13.5MHz pixel clock (output of the PIXCLK pin), and can be converted to NTSC television signals with a maximum perline (horizontal) resolution of 710 bits. Because the input synchronization signals — horizontal and vertical synchronization signals (outputs of pins HSY and VSY, respectively) — are generated internally, RGB data can be transferred according to TV encoder demands (i.e., synchronization signal) without the need for the complicated field sequence timing of NTSC. The format for digital data input is set with pins IM1 and IM0 (see Table 1 below). Moreover, digital RGB input can be output as analog GB signals in the through mode.

Table 1 : Setting the input format

	IM1	IMO	Input format	Output signal
	0	0	R (8 bits), G (8 bits), B (8 bits)	Television signals (9-bit resolution)
_	1	1	ROSD, GOSD and BOSD expanded to LSB for input RGB	RGB analog signal (9 bits)

Table 2:	Bit assignment in	n RGB through mode

Output pin	BIT8	BI⊤7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
VOUT	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	ROSD
YOUT	GD7	GD6	GD5	GD4	GD3	GD2	GD1	GD0	GOSD
COUT	BD7	BD6	BD5	BD4	BD3	BD2	BD1	BD0	BOSD

Multimedia ICs

Input RGB signals are YUV-converted, while signals Y, U and V are adjusted to the 100IRE level when set to the NTSC format. U and V signals are phase-modulated by an internally ordered 3.58MHz subcarrier, generating modulated color signals.

Finally, the needed synchronization levels, color blank level and burst signals, etc., are mixed, and NTSC composite signals, luminance signals and color signals are output through the 9-bit DAC. The connections are as follows :

(2) Output level

The figures below show pin output voltage level and the digital values of DAC output.

Output voltage (V)1.000 WHITE (396) WHITE LEVEL Digital NTSC/PAL encoders YELLOW (364) . . CYAN (312) GREEN (279) 100IRE MAGENTA (230) RED (198) . BLUE (146) BLACK (114) BLACK LEVEL (114) 0.283 Multimedia video 40/8E SYNC LEVEL (0) 0 000

() Parentheses indicate the value of digital DAC output. When VREF = 1.29 V, IR = 1.2 K Ω

NTSC composite : VOUT Luminance signal (Y) : YOUT

Color signal (C) : COUT

output voltage range is 1.0VP.P.

When also connecting the video input pin (75 Ω), the

Fig. 1 NTSC Y (luminosity) signal output level

ROHM

Fig. 2 NTSC C (chroma) signal output level

200

BU1414AK

() Parentheses indicate the value of digital DAC output. When VREF = 1.29 V, IR = 1.2 $K\Omega$

Fig. 3 NTSC V (composite) signal output level

(3) Timing

The BU1414AK generates NTSC signal timing using a 13.5MHz clock signal (BCLK input pin) in accordance with the termination of the reset signal. The timing chart below shows the input and output of timing pins.

Table 3:	Timing	input/	output	(BU1414	4AK)
----------	--------	--------	--------	---------	------

Pin No	Pin	Pin Name	Pin Name Input/output Function				
1	51	BCLK	Input	13.5 MHz clock input			
2	52	RSTB	Input	Reset input			
3	30	STRTB	Input	Function start timing input			
4	2 9	PIXCLK	Output	Pixel clock output (13.5 MHz)			
5	27	VSY	Output	Vertical synchronization signal			
6	25	HSY	Output	Horizontal synchronization signal			

Digital NTSC/PAL encoders

Multimedia video

Fig.5 BU1414AK Control timing 2

* Connect STRTB to GND when using the BU1414AK as a timing master.

202

ROHM

,

Fig. 6 Timing of synchronization signal output

able 4							
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition	
HYS output delay	tнр	_	30.0	-	nS		
VSY output delay	tvo	-	30.0	—	nS		
HSY-VSY timing offset	Δtнv	-20	0.0	20	nS		

Fig. 7 Clock and signal input timing

Table 5

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Setup time	ts	-	—	34.0	nS	
Hold time	tн	_	_	34.0	nS	

ROHM

203

Multimedia video

Fig. 8 Frame timing

204

ROHM

Table 6

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
HSYNC width	tsync	_	64	—	tCLK	tCLK=1/13.5MHz
Burst duration	t BURT	_	35	—	tCLK	"
Video output duration	tvio	_	711	_	tCLK	"
Equivalent pulse width	tea		31	-	tCLK	//
Vertical synch pulse width	tvs	-	64		tCLK	#
HSY L duration	tHSYL	_	64		tCLK	"

(4) Low power consumption mode

The BU1414AK can be set to either the normal mode or the low power consumption mode.

Table 7

Pin No.	Pin name	Output mode and power consumption			
48	YCOFF	VOUT	YOUT	COUT	Power consumption
	L	Composite signal	Luminance signal	Color signal	0.65W
	н	Composite signal	No output (0 V)	No output (0 V)	0.35W

(5) The DAC output level is determined by the internal DAC output current and the attached DAC output resistor. The output current of each DAC bit is determined by the VREF pin (pin 35) voltage and by the resistor attached to the IR pin (pin 42) (see below).
I (1LSB) = VVREF/(RIR+R0) *1/16 (equation 1)

 $\label{eq:VVREF} $$VVREF: voltage opplied on VREF [V]$$RIR: resistor attached to IR [Ω]$$RO: Internal parasitic resistance of IC [Ω]$$}$

Thus, when VVREF = 1.29V and RIR = $1.2k\Omega$, the current output for each LSB is 63.48 μ A. The white level of Y has a digital value of 396 (decimal) and therefore is calculated as follows :

V (Y white) = 0.06348 * 396 = 25.14 [mA]

If a 37.5 Ω resistor is attached to DAC output, amplitude is 0.943 [VPP].

The DAC output level can be fine-tuned according to equation 1 above. Please contact ROHM when using constants that differ significantly from those above (i.e., output level = 1 V_{P-P}, VVREF = 1.29V, RIR = $1.2k\Omega$, attached DAC output resistor = 37.5Ω).

206

Multimedia ICs

ŝ

BU1414AK

External dimensions (Units: mm)

ROHM

Notes

- The contents described in this catalogue are correct as of March 1997.
- No unauthorized transmission or reproduction of this book, either in whole or in part, is permitted.
- The contents of this book are subject to change without notice. Always verify before use that the contents are the latest specifications. If, by any chance, a defect should arise in the equipment as a result of use without verification of the specifications, ROHM CO., LTD., can bear no responsibility whatsoever.
- Application circuit diagrams and circuit constants contained in this data book are shown as examples of standard use and operation. When designing for mass production, please pay careful attention to peripheral conditions.
- Any and all data, including, but not limited to application circuit diagrams, information, and various data, described in this catalogue are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO., LTD., disclaims any warranty that any use of such device shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes absolutely no liability in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices; other than for the buyer's right to use such devices itself, resell or otherwise dispose of the same; no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD., is granted to any such buyer.
- The products in this manual are manufactured with silicon as the main material.
- The products in this manual are not of radiation resistant design.

The products listed in this catalogue are designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers, or other safety devices) please be sure to consult with our sales representatives in advance.

- Notes when exporting
 - It is essential to obtain export permission when exporting any of the above products when it falls under the category of strategic material (or labor) as determined by foreign exchange or foreign trade control laws.
 - Please be sure to consult with our sales representatives to ascertain whether any product is classified as a strategic material.