Gray scale processor (32 tones) **BU2134AK**

The BU2134AK is an LSI designed for use in image scanners and facsimile machines, with a function which takes analog image signals output from an image sensor in an image processing device and converts them to binary format.

This product is equipped with an internal 6-bit A/D converter, image sensor control circuit, and CPU interface, and can be configured easily for data reading.

Applications

Facsimile machines, word processors, and other similar devices

Features

- 1) Internal 6-bit A/D converter. (internal data width after shading: 5 bits)
- 2) Shading correction function.
- 3) ABC (Auto Background Control) function.
- 4) Pseudo intermediate processing based on organizational dither method.
- 5) Pseudo intermediate processing based on error dispersion method.

6) Simple binary processing.

- 7) 2-dimensional edge enhancement and 2-dimensional character enhancement.
- 8) γ correction.
- 9) Reduction in horizontal direction.

●Absolute maximum ratings (Unless otherwise noted, Ta=25℃, Voo=5V)

Parameter	Symbol	Limits	Unit	
Power supply voltage	Vod	-0.3~7.0	V	
Input voltage	VIN	-0.3~Vpp+0.3	v	
Analog power supply voltage	AVDD	0.3~Vpp+0.3	۷	
Analog input voltage	AVIN	-0.3~AVDD+0.3	V	
Operating temperature	Topr	0~70	ĉ	
Storage temperature	Tstg	-55~150	ĉ	
Input current	lin	±20	mA	
Output current	lo	±20	mA	
Power dissipation	Pd	800*	mW	

* Reduced by 8mW for each increase in Ta of 1°C over 25°C.

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vdd	4.75	5	5.25	v
Input voltage	Vin	0	—	VDD	v
Analog power supply voltage	AVDD	0	_	VDD	V
Analog ground voltage	Agnd	_	0	-	v
Reference voltage +	Ref+	3		AVDD	v
Reference voltage -	Ref-	0	_	1	v
Analog input voltage	Ain	Ref-		Ref+	v

FAX

Image processing ASSP for FAX

BU2134AK

ROHM

A	
B Pin	description
• •••••	accomption

Parameter	Pin Name	I/O	Function
Video signal output	DTO	Output	Outputs binary video signal as serial data.
	MA13~MA00	Output	Outputs external SRAM address; MA13 is MSB.
	MD7~MD0	Input/Output	Data bus for external SRAM; MD7 is MSB.
Line memory interface	ŌĒ	Output	Output Enable signal for external SRAM (negative logic)
	WE	Output	Write Enable signal for external SRAM (negative logic)
	AB3~AB0	Input	Address input pin; AB3 is MSB.
	DB7~DB0	Input/Output	Data Input/output pln; DB7 is MSB.
	WR	Input	Write input pin for setting internal register (negative logic)
CPU interface	RD	Input	Read input pin for reading internal register (negative logic)
	DREQ	Output	Outputs DMA Request signal in parallel mode. Outputs DTO latch clock in serial mode.
	DACK	Input/Output	Inputs DMA Acknowledge signal in parallel mode (negative logic). Outputs DTO Enable signal in serial mode (negative logic).
	CS	Input	Chip Select input pin which enables access to internal register (negative logic)
	RST	Input	System reset input pin (negative logic)
System clock	SCLK	Input	System clock input pin
Line start	LNST	input	Inputs line start signal.
	¢1	Output	Output pin 1 for image sensor drive clock
I	¢2	Output	Output pin 2 for Image sensor drive clock
Image sensor interface	RS	Output	Image sensor reset signal output pin.
internated	∳ TG	Output	Image sensor transfer gate pulse output pin.
	CLP	Output	Analog ground signal
	AINO	Input	Inputs image sensor analog video signals.
	AIN1	Input	Inputs analog signals (such as temperature sensor).
Analog interface	REF+	_	Connect this to reference voltage of the A/D converter full-scale point.
	REF	_	Connect this to reference voltage of the A/D converter zero point.
	VDD	_	Connect this to the digital power supply (+5 V) (Pin 3).
Power supply/ground	GND		Connect this to the digital ground (Pin 4).
Lower anhhilitigrand	AVDD	_	Connect this to the analog power supply (Pin 1).
	AGND	_	Connect this to the analog ground (Pin 1).

312

ROHM

BU2134AK

Pin descriptions

Pin No.	1/0	Pin Name	Pin No.	1/0	Pin Name	Pin No.	1/0	Pin Name	Pin No.	1/0	Pin Name
1	0	MA00	17	0	OE	33	1/0	D85	49	V	AV _{DD}
2	0	MA01	18	[:] 0	WE	34	1/0	DB6	50	Ι	AIN 0
3	0	MA02	19	1/0	MD0	35	1/0	DB7	51	I	AIN 1
4	0	MA03	20	1/0	MD1	36	<u> </u>	AB0	52		REF+
5	0	MA04	21	1/0	MD2	37	I	AB1	53	- .	REF
6	0	MA05	22	1/0	MD3	38	I	AB2	54	G	AGND
7	0	MA06	23	1/0	MD4	39	I	AB3	55	-	NC
8	G	GND	24	G	GND	40	G	GND	56	V	Vod
9	V	VDD	25	1/0	MD5	41	V	Vod	57	0	¢1
10	0	MA07	26	1/0	MD6	42	1/0	DACK	58	0	¢2
11	0	MA08	27	1/0	MD7	43	0	DREQ	59	0	RS
12	0	MA09	28	1/0	DB0	44	I	WR	60	0	φ⊺G
13	0	MA10	29	1/0	DB1	45	I	RD	61	0	CLP
14	0	MA11	30	1/0	DB2	46	I	CS	62	0	DTO
15	0	MA12	31	1/0	DB3	47	I	RST	63	G	GND
16	0	MA13	32	1/0	DB4	48	1	LNST	64		SCLK

TTL level input: WR, RD, DACK, DB0 to DB7, MD0 to MD7, AB0 to AB4

CMOS level input: SCLK, LNST, RST, CS

FAX

Image processing ASSP for FAX

ROHM

Pin assignments

Fig. 1

RÖHM

Input/output circuits

CMOS output

Bi-directional CMOS, bi-directional TTL

ROHM

PAD

Reference voltage

Analog input

315

i

BU2134AK

Electrical characteristics

DC characteristics (Unless otherwise noted, $Ta=25^{\circ}C$, $V_{DD}=5V$)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Input voltage "H"	Viн	3.5	<u> </u>	VDD	v	CMOS level
Input voltage "L"	Vit	0		1.5	V	CMOS level
Input voltage "H"	Viн	2.4	-	Vod	v	TTL level
Input voltage "L"	Vı∟	0	_	0.8	v	TTL level
Input current "H"	lн	_	_	-10	μA	VIH=VDD
Input current "L"	lı.		_	10	μA	VIL=GND
Output current "H"	Іон	-1.0	_	-	mA	V _{OH} =V _{DD} -0.4V
Output current "L"	lo.	3.2		-	mA	VoL=0.4V
Output leakage current	loz	-		±10	μA	Vo=VDD or GND
Static current consumption	İst	_		100	μA	VI=VDD or GND

Switching characteristics (Unless otherwise noted, Ta=25°C, Voo=5V)

	Parameter	No.	Min.	Тур.	Max.	Unit
	System clock cycle, tcyc	1	100	_	_	ns
System clock	System clock pulse width "H", twh	2	40	_		ns
	System clock pulse width "L" ,twl	3	40		_	ns
	CS ~ WR, RD setup time	4	0		_	ns
	AB ~ WR, RD setup time	5	20	_	_	ns
	DB ~ WR setup time	6	50	_	_	ns
CPU interface	WR, RD pulse width	7	100	_	_	ns
	WR, RD ~ CS hold time	8	0	_	_	ns
	WR, RD ~ AB hold time	9	20		—	ns
	WR ~ DB hold time	10	20	·	_	ns
	RD ~ DB hold time	10	0	_	_	ns
	Read cycle time	11	_	tcyc		ns
	MA, MCS ~ OE setup time	12	_	twh		ns
	OE pulse width	13	_	twl	_	ns
	OE ~ MA, MCS hold time	14	0			ns
SRAM interface	Write cycle time	15	-	tcyc	_	ns
	MA, MCS ~ WE setup time	16		twh	_	ns
	MD ~ WE setup time	17		twl	. —	ns
	WE pulse width	18		twl	_	ns
	WE ~ MA, MCS hold time	19	0	_	-	ns
	WE ~ MD hold time	20	0		_	ns

316

ROHM

ł

- 1

Image processing ASSP for FAX

FAX

Data input/output timing

SYSTEM CLOCK

CPU INTERFACE

SRAM INTERFACE

ROHM

!

Description of register functions

Address	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	R	W
0	*8	*7	*6	*5	*4	*3	*2	*1	0	0
1	*14		* 13	•	*12	*11	*10	*9	×	0
2	0	* 20	*	19	* 18	*17	*16	*15	×	0
3	Line clamp/start position MSB is #			;#	0		*21		×	0
4	4	#		_ine clamp/	end positio	n			×	0
5	Distortion correction start position				×	0				
6	0		,	ABC start position					×	0
7		·		ABC end po	sition				×	0
8				*	22				0	0
9				*	23				×	0
А		*	25		*24				×	0
В	*	27	0		*26			×	0	
С		*	29		* 28					0
D		*	31		* 30				×	0
E	0		* 33		1	*	32		×	0

*1	White reference screen scan (read enabled	•
	When 0:	Stop
	When 1:	Start
*2	Offset scan (read enabled)	_
	When 0:	Stop
	When 1:	Start
*3	Binary processing (read enabled)	
	When 0 :	Stop
	When 1:	Start
*4	ABC Enable (read enabled)	
	When 0:	Off
	When 1:	On
*5	ABC initialization	
	When 0 :	Off
	When 1:	On
*6	Data table/Write Enable	
	When 0:	Writing of data table to Address 8 is off
	When 1:	Writing of data table to Address 8 is on
	 For simple binary processing : 	5 bits $ imes$ 32 words (gamma correction data)
	2) For dither method :	5 bits $ imes$ 64 words (slice data)
	3) For error dispersion method :	5 bits × 32 words (density adjustment data)
*7	White reference data/Write Enable	
	When 0:	Writing of white reference data to Address 8 is off
	When 1:	Writing of white reference data to Address 8 is on
*8	White reference data/Read Enable	
	When 0 :	Reading of white reference data from Address 8 is off
	When 1:	Reading of white reference data from Address 8 is on
*9	Binary video signal output mode	-
	When 0 1	Binary vídeo signals are output as serial data.
	When 1:	Binary video signals are output as parallel data.
*10	Parallel mode specification	
	When 0 :	First bit of binary video signal is taken as LSB.
	When 1:	First bit of binary video signal is taken as MSB.
*11	Binary video signal selection	
	When 0:	Black = 0, White = 1
	When 1 :	Black = 1, White = 0

ROHM

*12	Offset correction	
	When 0 :	Off
	When 1:	On
*13	Internal sample / hold timing	
	When 000 :	Sampled at S1 cycle
	When 001:	Sampled at S2 cycle
	When 010 :	Sampled at S3 cycle
	When 011 :	Sampled at S4 cycle
	When 100 :	Sampled at S5 cycle
	When 101 :	Sampled at S6 cycle
	When 110 :	Sampled at \$7 cycle
	When 111:	Sampled at S0 cycle
* 14	A/D converter channel switching	
	When 0 :	Connected to AIN0
	When 1 :	Connected to AIN1
* 15	Image sensor	
	When 0 :	CCD
	When 1:	CIS
* 16		
	When 0 :	Positive logic
	When 1:	Negative logic
*17	RS and CLP output logic	
	When 0 :	Positive logic
	When 1 :	Negative logic
* 18	Clamping method	
	When 0 :	Bit clamping
	When 1:	Line clamping
* 19	\$\$\phi\$ 1 clock and RS output specification	
	 1 clock duty (when using CIS) 	
	When 00 :	HIGH for S0 to S3 cycles, LOW for S4 to S7 cycles
	When 01:	HIGH for \$0 to \$3 cycles, LOW for \$4 to \$7 cycles
	When 10 :	HIGH for S0 to S1 cycles, LOW for S2 to S7 cycles
	When 11:	HIGH for S0 to S5 cycles, LOW for S6 to S7 cycles
	RS output position (when using CCD)	
	When 00 :	Output at S5 cycle
	When 01:	Output at S6 cycle
*20	∮ TG pulse width	
	When using CCD	
	When 0	Output at S1 to S6 cycles
	When 1:	Output at \$0 to \$7 cycles
	When using CIS	
	When 0:	Output at S1 to S0 cycles
	When 1:	Output at S0 to S7 cycles
	Original width specification	

DB2	DB1	DB0	Distortion correction width	Reading width	Reading position
0	0	0	1728	1728 (A4, 8dot / mm or equivalent)	
0	0	1	2048	1728 (A4, 8dot / mm or equivalent)	Center
0	1	0	2048	2048 (B4, 8dot / mm or equivalent)	· •
0	1	1	2432	1728 (A4, 8dot / mm or equivalent)	Center
1	0	0	2432	2048 (B4, 8dot / mm or equivalent)	Center
1	0	1	2432	2432 (A3, 8dot / mm or equivalent)	_
1	1	0	2592	2592 (A4, 12dot / mm or equivalent)	_

ROHM

Image processing ASSP for FAX

FAX

BU2134AK

*22 Numerator of reduction ratio in horizontal direction

 \pm 23 Denominator of reduction ratio in horizontal direction \pm 23

The reduction ratio is set as shown below, using Address 8 (numerator) and Address 9 (denominator).

	Reduction ratio =	et for reduction ratio numerator) + 1
	(value set	for reduction ration denominator) + 1
*24	Black follow-up speed	
	When 0:	ABC circuit not followed on dark background
	When 1 to 15:	The larger the set value, the faster the ABC is followed on a dark background.
25	White follow-up speed	
	When 0 :	ABC circuit not followed on light background
	When 1 to 15:	The larger the set value, the faster the ABC is followed on a light background.
26	Binary parameter	
	1) For simple binary processing :	Set the slice level.
	2) For organizational dither processing :	This parameter is invalid.
	 For error dispersion processing : 	Set the black level.
*27	Binary mode	
	When 00 :	Simple binary processing
	When 01 :	Simple binary processing
	When 10 :	Pseudo intermediate processing using organizational dither method
	When 11 :	Pseudo intermediate processing using error dispersion method
*26	Degree of edge enhancement in horizonta	I direction
	When 0:	Edge enhancement off
	When 1 to 15 :	The larger the set value, the stronger the enhancement will be.
* 29	Degree of edge enhancement in vertical direction	
	When 0:	Edge enhancement off
	When 1 to 15	The larger the set value, the stronger the enhancement will be.
*30	Correction parameter in horizontal direction	
	This parameter is used as a threshold to determine whether or not edge enhancement is to be carried out when the amount of density in the	
	horizontal direction is changed.	
*31	Correction parameter in vertical direction	
	This parameter is used as a threshold to determine whether or not edge enhancement is to be carried out when the amount of density in the vertice	
	direction is changed.	
* 32	Character enhancement parameter B	
	When pseudo intermediate processing is used, this parameter is used as a threshold to determine whether or not edge enhancement is to be	
	carried out when the amount of density in both the horizontal and vertical directions is changed.	
*33	Character enhancement parameter A	
	1) This parameter defines character enhan	cement when pseudo intermediate processing is used.
	2) When using the dither method	
	When 000 :	Character enhancement off
	When 001 to 111:	The larger the set value, the stronger the enhancement will be.
	3) When using the error dispersion method	
	When 000 :	Character enhancement off
	When 001 to 111 :	The larger the set value, the stronger the enhancement will be.
*34	Resetting the internal registers of Address	es 0 to 2 clears the values to 0.
	The set values for other internal registers do not change when a reset is initiated.	
* 35	Register setting unit	
	1) The line clamping start and end positions can be specified in units of 1 pixel.	
	2) The distortion correction start position can be specified in units of 1 pixel.	
	3) The ABC start and end positions can be specified in units of 16 pixels.	
36	In the following cases, Address 8 should be used for reading and writing of data.	
	1) Writing data tables	
	2) Reading and writing white reference data	
	-,	~ Dn

320

ROHM

BU2134AK

Operation timing charts

ROHM

BU2134AK

ROHM

BU2134AK

÷

FAX

Fig. 7 Line control timing diagram

ROHM

BU2134AK

BU2134AK

Application example

External dimensions (Units: mm)

ROHM

Notes

- The contents described in this catalogue are correct as of March 1997.
- No unauthorized transmission or reproduction of this book, either in whole or in part, is permitted.
- The contents of this book are subject to change without notice. Always verify before use that the contents are the latest specifications. If, by any chance, a defect should arise in the equipment as a result of use without verification of the specifications, ROHM CO., LTD., can bear no responsibility whatsoever.
- Application circuit diagrams and circuit constants contained in this data book are shown as examples of standard use and operation. When designing for mass production, please pay careful attention to peripheral conditions.
- Any and all data, including, but not limited to application circuit diagrams, information, and various data, described in this catalogue are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO., LTD., disclaims any warranty that any use of such device shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes absolutely no liability in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices; other than for the buyer's right to use such devices itself, resell or otherwise dispose of the same; no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD., is granted to any such buyer.
- The products in this manual are manufactured with silicon as the main material.
- The products in this manual are not of radiation resistant design.

The products listed in this catalogue are designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers, or other safety devices) please be sure to consult with our sales representatives in advance.

Notes when exporting

- It is essential to obtain export permission when exporting any of the above products when it falls under the category of strategic material (or labor) as determined by foreign exchange or foreign trade control laws.
- Please be sure to consult with our sales representatives to ascertain whether any product is classified as a strategic material.