Gray scale processor (64 tones) BU2135K

The BU2135K is an LSI designed for use in image scanners and facsimile machines, with a function which takes analog image signals output from an image sensor in an image processing device and converts them to binary format.

This product is equipped with an internal 8-bit A/D converter, image sensor control circuit, and CPU interface, and can be configured easily for data reading. It is compatible with the BU2134AK, making it easy to configure up 64-tone settings.

Applications

Facsimile machines, word processors, and other similar devices

Features

- Internal 8-bit A/D converter. (internal data width after shading : 6 bits)
- 2) Internal 8-bit D/A converter.
- Isolated point rejection. (when using simple binary processing)
- 4) Applied binary processing.
- Data can be read following shading correction. All other functions of the BU2134AK are included in the BU2135K.

Block diagram

Parameter	Symbol	Limits	Unit
Power supply voltage	VDD	-0.3~7.0	٠V
Input voltage	Vin	-0.3~Vpp+0.3	v
Analog power supply voltage	AVpp	-0.3~Vpp+0.3	٧
Analog input voltage	AVIN	-0.3~AVpp+0.3	V
Operating temperature	Topr	0~70	Ĵ
Storage temperature	Tstg	-55~150	°C
Input current	łın	±20	mA
Output current	lo	±20	mA
Power dissipation	Pd	800*	mW

* Reduced by 8.0mW for each increase in Ta of 1°C over 25°C.

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	VDD	4.75	5	5.25	V
Input voltage	VIN	0	_	VDD	V
Analog power supply voltage	AVDD	0	_	VDD	V
Analog ground voltage	AGND		0	_	V
Reference voltage +	Rer+	3	-	AVDD	V
Reference voltage -	Ref-	0	_	1	V
Analog input voltage	Aiń	Ref-	-	Ref+	v

FAX

ROHM

Pin descriptions

Parameter	Pin Name	I/O	Function
Video signal output	DTO	Output	Outputs binary video signal as serial data.
	MA13~MA00	Output	Outputs external SRAM address; MA13 is MSB.
Line memory interface	MD7~MD0	Input/Output	Data bus for external SRAM; MD7 is MSB.
	OE .	Output	Output Enable signal for external SRAM (negative logic)
	WE	Output	Write Enable signal for external SRAM (negative logic)
	AB3~AB0	Input	Address input pin; AB4 is MSB.
	DB7~DB0	Input/Output	Data input/output pin; DB7 is MSB.
	WR	Input	Write input pin for setting internal register (negative logic)
	RD	Input	Read input pin for reading internal register (negative logic)
CPU interface	DREQ	Output	Outputs DMA Request signal in parallel mode. Outputs DTO latch clock in serial mode.
	DACK	Input/Output	Inputs DMA Acknowledge signal in parallel mode (negative logic). Outputs DTO Enable signal in serial mode (negative logic).
	ĊŠ	Input	Chip Select input pin which enables access to internal register (negative logic)
	RST	Input	System reset input pin (negative logic)
System clock	SCLK	Input	System clock input pin
Line start	LNST	Input	Inputs line start signal
	¢1	Output	Output pin 1 for image sensor drive clock
	¢2	Output	Output pin 2 for image sensor drive clock
Image sensor interface	RS	Output	Image sensor reset signal output pin
	φTG	Output	Image sensor transfer gate pulse output pin
	CLP	Output	Analog ground signal
	DAO	Output	Outputs conversion voltage for D/A converter.
	AINO	Input	Inputs image sensor analog video signals.
Analog interface	AIN1	Input	Inputs analog signals (such as temperature sensor).
	REF+		Connect this to reference voltage of the A/D converter full-scale point
	REF-		Connect this to reference voltage of the A/D converter zero point.
	VDD		Connect this to the digital power supply (+5 V) (Pin 3).
	GND		Connect this to the digital ground (Pin 4).
Power supply/ground	AVDD		Connect this to the analog power supply (Pin 1).
	AGND		Connect this to the analog ground (Pin 1).

328

Image processing ASSP for FAX

FĂ

Pin assignments

Fig. 1

ROHM

Pin No.	1/0	Pin Name	I/O Circuit Format	Pin No.	1/0	Pin Name	I/O Circuit Format
1	0	MA00	С	33	1/0	DB5	Е
2	0	MA01	С	34	1/0	DB6	E
3	0	MA02	С	35	1/0	DB7	E
4	0	MA03	С	36	1	AB0	В
5	0	MA04	С	37	I	AB1	В
6	0	MA05	С	38	ł	AB2	В
7	0	MA06	С	39	1	AB3	В
8	G	GND	_	40	G	GND	
9	V	Vod		41	v	Vod	. <u> </u>
10	0	MA07	С	42	1/0	DACK	Е
11	0	MA08	С	43	0	DREQ	С
12	0	MA09	С	44	1	WR	В
13	0	MA10	С	45	I	RD	В
14	0	MA11	С	46	I	CS	Α
15	0	MA12	С	47	I	RST	Α
16	0	MA13	С	48	1	LNST	Α
17	0	OE	С	49	V	AVDD	_
18	0	WE	С	50	I	AIN0	F
19	1/0	MD0	D	51	I	AIN1	F
20	1/0	MD1	D	52	_	REF+	G
21	1/0	MD2	D	53	_	REF-	G
22	1/0	MD3	D	54	G	AGND	
23	1/0	MD4	D	55	0	DAO	н
24	G	GND	_	56	V	Vdd	_
25	1/0	MD5	D	57	0	¢1	С
26	1/0	MD6	D	58	0	¢2	С
27	1/0	MD7	D	59	0	RS	С
28	1/0	DB0	E	60	0	¢ TG	С
29	1/0	DB1	Ē	61	0	CLP	С
30	1/0	DB2	E	62	0	DTO	с
31	1/0	DB3	E	63	G	GND	_
32	1/0	DB4	Ε	64	1	SCLK	Α

Input/output circuit formats

330

Input/output circuits

(A) Schmitt input cell

(B) TTL Schmitt input cell

(D) Bi-directional CMOS Input pull-up cell

(C) CMOS output cell

(G) Reference voltage input cell

(F) Analog input cell

(H) Analog output cell

ROHM

●DC characteristics (Unless otherwise noted, Ta=25°C, VD=5V)

Parameter	Symbol	Min.	Тур.	Max,	Unit	Conditions
Input voltage "H"	Vihi	3.5	-	VDD	V	CMOS level
Input voltage "L"	VIL1	0	-	1.5	V	CMOS level
Input voltage "H"	ViH2	2.4	_	Vad	v	TTL Schmitt
Input voltage "L"	VIL2	0	_	0.8	v	TTL Schmitt
Input voltage "H"	Vінз	2.7		4.0	v	CMOS Schmitt
Input voltage "L"	Vila	1.3		2.0	V	CMOS Schmitt
Hysteresis voltage	Vн	0.4	-	1.8	v	Schmitt level
Input current "H"	Ін	_		-10	μA	VIH=VDD
Input current "L"	lı.	_	-	10	μA	Vil=GND
Output voltage "H" 1	VoH1	4.6	_	_	v	Iон1=-1.0mA
Output voltage "L" 1	Vol1	_	_	0.4	v	IoL1=3.2mA
Output voltage "H" 2	VOH2	4.6	-	-	v	Iон2=-2.0mA
Output voltage "H" 3	Vонэ	4.6		_	V	Iонэ=-3.5mA
Output voltage "L" 3	Vols	-		0.4	v	lou3=11.2mA
Output leakage current	loz		_	±10	μA	Vo=VDD or GND
Static current consumption	lsт	_		100	μA	

*1 VIH1 and VIL1 are applied to Pins MD0 to 7.

*2 VIH2 and VIL2 are applied to Pins DB0 to 7, AB0 to 3, DACK, WR, and RD.

*3 VIH3 and VIL3 are applied to Pins CS, RST, LNST, and SCLK.

*4 VH is applied to plns DB0 to 7, AB0 to 3, DACK, WR, RD, CS, RST, LNST, and SCLK.

* 5 VOH1 is applied to the DACK pin.

*6 VoL1 is applied to Pins MA0 to 13, OE, WE, MD0 to 7, DACK, DREQ, \$\phi 1, \$\phi 2, RS, \$\phi TG, CLP, and DTO.

*8 VOH3 and VOL3 are applied to Pins DB0 to 7.

332

,

	Parameter	Symbol	Min.	Тур.	Max.	Unit
_	System clock cycle tcyc	1	60	-	-	ns
System clock	System clock pulse width "H" twh	2	30	—	_	ns
CIOOK	System clock pulse width "L" twl	3	30	_	—	ns
	CS ~ WR, RD setup time	4	0	_	_	ŃS
	AAB ~ WR, RD setup time	5	20	_	_	ns
	DB ~ WR setup time	6	50	—	_	ns
CPU	WR, RD pulse width	7	100	_	—	ns
interface	WR, RD ~ CS hold time	8	0	—	—	ns
	WR, RD ~ AB hold time	9	20	—	-	ns
	WR ~ DB hold time	10	20		110	ns
	RD ~ DB hold time	10	0	—	_	ns
	Read cycle time	11	_	tcyc		ns
	MA, MCS ~ OE setup time	12	—	twh	-	ns
	OE pulse width	13	<u> </u>	twl	-	ns
	OE ~ MA, MCS hold time	14	0	—	-	ns
SRAM	Write cycle time	15	_	tcyc	_	ns
interface	MA, MCS ~ WE setup time	16	_	twh	-	ns
	MA, MCS ~ WE setup time	17	-	twl	-	ns
	WE pulse width	18	_	twl	-	ns
	WE ~ MA, MCS hold time	19	0		. —	ns
	WE ~ MD hold time	20	0	-	—	ns

●Switching characteristics (Unless otherwise noted, Ta=25℃, Voo=5V)

Image processing ASSP for FAX

FAX

SYSTEM CLOCK

ROHM

CPU INTERFACE

SRAM INTERFACE

334

Rohm

4) When *35 is 1 and *38 is 1 : Use inhibited

When 1 :

When 1 :

When 1:

2) For dither method :

*7 SRAM date/Write Enable When 0:

*8 SRAM data/Read Enable When 0:

3) For error dispersion method :

.

w 0 0

000

00000

0 0

0 0 0

0

0 *8 *7 *6 *5 *4 *3 *2 *11 0 1 *14 *13 *12 *11 *10 *9 × 2 *21 *20 *19 *18 *17 *16 *15 × 3 Line clamp/start position MSB is # *22 ×<	Address	DB7	DB6	DB5	· D4	DB3	DB2	D81	DB0	R
2 *21 *20 *19 *18 *17 *16 *15 × 3 Line clamp/start position MSB is # *22 ×	0	*8	*7	*6	*5	*4	*3	*2	*1	0
3 Line clamp/start position MSB is # *22 × 4 # Line clamp/end position × 5 Distortion correction start position × 6 \$ ABC start position × 6 \$ ABC end position; MSB is \$ × 7 ABC end position; MSB is \$ × 8 *23 > 9 *24 × A *26 *25 × B *28 *27 × C *30 *29 × D *32 *31 × FU *38 *37 *36 0 0 0 × 1 Where reference screen scan (read enabled) When 0: Start Start 3 × 2 Ofest scan (read enabled) When 1: Start 3 5 5 When 1: Start Start 4 ABC enabled; 4 4 4 4 4 4 4 5 5 5 5 5 5 5<	1	*14		* 13		* 12	*11	*10	*9	×
4 # Line clamp/end position × 5 Distortion correction start position × 6 \$ ABC exact position × 7 ABC end position; MSB is \$ × 8 *23 O 9 *24 × A *26 *25 × 8 *28 *27 × C *30 *29 × D *32 *31 × E *35 *34 *33 × F D/A converter digital data × × FU *38 *37 *36 0 0 0 × 1 White reference screen scan (read enabled) When 0 : Start 2 Start 2 VGest scan (read enabled) × Vhen 1 : Start Start 3 Start 3 3 3 3 Binery processing (read enabled) When 1 : Start 3 Start 3 3 3 4 ABC Enable (read enabled) When 1 :	2	*21	*20	*20 *19			*17	*16	* 15	×
4 # Line clamp/end position X 5 Distortion correction start position X 6 \$ ABC end position; MSB is \$ X 8 *23 O 9 *23 O 9 *24 X A *26 *25 X B *28 *27 X C *30 *29 X D *32 *31 X E *35 *34 *33 X F D/A converter digital data X X FU *38 *37 *36 0 0 0 X 1 White reference screen scan (read enabled) When 0 : Start	3	Line	lamp/start :	osition MS	Bis#		*	22		×
5 Distortion correction start position × 6 \$ ABC start position × 7 ABC end position; MSB is \$ × 8 *23 ○ 9 *23 ○ 9 *24 × A *26 *25 × B *28 *27 × C *30 *29 × D *32 *31 × E *35 *34 *33 × FU *38 *37 *36 0 0 0 × 1 Where 0: Stop Start 2 2 × 2 × 3 × 1 Where 0: Stop Start 2 0 0 0 0 × 3 Burkey processing (read enabled) When 0: Stop Start 3 × 3 3 × 3 3 × 3 3 3 3 3 3 3 3 3 3 3	4					Line clamp/r	and positio	·····		×
6 \$ ABC start position × 7 ABC end position; MSB is \$ × 8 +23 ○ 9 +23 ○ 9 +24 × A *26 *25 × B *28 *27 × C *30 *29 × D *32 *31 × E *35 *34 *33 × FU *38 *37 *36 0 0 0 × 1 White reference screen scan (read enabled) When 0: Stop Start × × 2 Offset scan (read enabled) When 0: Stop × × 3 Binary processing (read enabled) When 1: Start × × × 4 ABC Enable (read enabled) On Start × × × 4 ABC Enable (read enabled) When 1: On × × × 5 ABC initialization On Stat × ×	5									
7 ABC end position; MSB is \$ × 8 *23 ○ 9 *24 × A *26 *25 × B *28 *27 × C *30 *29 × D *32 *31 × E *35 *34 *33 × FU *38 *37 *36 0 0 0 0 × 1 White reference screen scan (read enabled) When 0 : Start Start × × × 2 Offset scan (read enabled) When 1 : Start Start × × × × 3 Binary processing (read enabled) When 1 : Start × × × × × 4 ABC Enable (read enabled) When 1 : On 5 × × × 5 ABC initialization On On 5 × × × 6 SRAM access select When 0 : On 6 <td< td=""><td></td><td>¢</td><td></td><td>Digitor</td><td></td><td></td><td></td><td>·</td><td></td><td></td></td<>		¢		Digitor				·		
8 *23 O 9 *24 X A *26 *25 X B *28 *27 X C *30 *29 X D *32 *31 X E *35 *34 *33 X F D/A converter digital data X FU *38 *37 *36 0 0 0 X 1 When 0 : Stop Stop When 1 : Start 2 Ytist scan (read enabled) When 1 : Start 2 Offs scan (read enabled) When 0 : Stop When 1 : Start 3 Binary processing (read enabled) When 0 : On 5 5 4 ABC Enable (read enabled) When 0 : On 5 5 ABC initialization When 0 : On On 6 6 5 6 6 6 5 BABC initialization When 0 : On 6 6 6 6 5 6 6 </td <td></td> <td colspan="7">· ·</td> <td></td>		· ·								
9 *24 X A *26 *25 X B *28 *27 X C *30 *29 X D *32 *31 X E *35 *34 *33 X F D/A converter digital data X X FU *38 *37 *36 0 0 0 0 X 1 When 0 : Stop Start 2 Start 2 X X 2 Offst scan (read enabled) When 0 : Stop 0 0 0 X 4 ABC Enable (read enabled) When 0 : Stop Start 3	7	ABC end position; MSB is \$								
A *26 *25 X B *28 *27 X C *30 *29 X D *32 *31 X E *35 *34 *33 X F D/A converter digital data X FU *38 *37 *36 0 0 0 0 X I White reference screen scan (read enabled) When 0 : Stop Start 2 Start 2 Start 3 3 3 4 4 4 2 1 1 3 5 5 4 4 4 2 1 1 3	8				*	23				0
B *28 *27 × C *30 *29 × D *32 *31 × E *35 *34 *33 × F D/A converter digital data × × FU *38 *37 *36 0 0 0 0 × I *38 *37 *36 0 0 0 0 × × FU *38 *37 *36 0 0 0 0 × × I *38 *37 *36 0 0 0 0 × × I *38 *37 *36 0 0 0 0 × × I *38 *37 *36 0 0 0 0 × × I *38 *37 *36 0 0 0 × × × × × × × × × × × × × × ×<	9	9 *24								×
C *30 *29 × D *32 *31 × E *35 *34 *33 × F D/A converter digital data × × FU *38 *37 *36 0 0 0 0 × White reference screen scan (read enabled) When 0: Stop ×	A	A *26 *25							×	
D *32 *31 × E *35 *34 *33 × F D/A converter digital data × × FU *38 *37 *36 0 0 0 0 × I *38 *37 *36 0 0 0 0 × × FU *38 *37 *36 0 0 0 0 × × FU *38 *37 *36 0 0 0 0 × × FU *38 *37 *36 0 0 0 0 × When 0: Stop Mhen 1: Start Start Start Start Start Start 3 Binary processing (read enabled) When 1: Start Start Start Start 4 ABC Enable (read enabled) When 1: On Start Start Start Start 5 ABC Initialization When 1: On On Gff Mhen 1: O	в	B *28				*	27	- ·		×
E *35 *34 *33 × F D/A converter digital data × × FU *38 *37 *36 0 0 0 0 0 × I White reference screen scan (read enabled) When 0 : Stop 0 0 0 0 0 × × I White reference screen scan (read enabled) When 0 : Stop ×	С	* 30				* 29				
F D/A converter digital data × FU * 38 * 37 * 36 0 0 0 0 0 × I White reference screen scan (read enabled) When 0: Stop % </td <td>D</td> <td colspan="6">*32 *31</td> <td></td> <td>×</td>	D	*32 *31							×	
FU * 38 * 37 * 36 0 0 0 0 0 0 × 1 White reference screen scan (read enabled) When 0 : Stop Stop When 1 : Start 2 Offset scan (read enabled) When 0 : Stop Stop When 1 : Start 3 Binary processing (read enabled) When 0 : Stop Stop When 1 : Start 4 ABC Enable (read enabled) When 0 : Off Off When 0 : Off 5 ABC initialization Off When 0 : Off Off When 0 : Off On 6 SRAM access select On 6 SRAM access select When 0 : Access to external SRAM Access to external SRAM	Е	*35 *34				* 33				
1 White reference screen scan (read enabled) When 0 : Stop When 1 : Start 2 Offset scan (read enabled) When 0 : Stop When 1 : Start 3 Binary processing (read enabled) When 0 : Stop When 1 : Start 4 ABC Enable (read enabled) When 0 : Off When 1 : On 5 ABC initialization When 1 : On 6 SRAM access select When 0 : Access to external SRAM	F		J	D	A converte	ər digital dat	a			×
1 White reference screen scan (read enabled) When 0 : Stop When 1 : Start 2 Offset scan (read enabled) When 0 : Stop When 1 : Start 3 Binary processing (read enabled) When 0 : Stop When 1 : Start 4 ABC Enable (read enabled) When 1 : Off When 1 : On 5 ABC initialization When 1 : On 6 SRAM access select When 0 : Access to external SRAM	FU	* 38	*37	*36	0	0	0	0	0	×
When 1: Start 4 ABC Enable (read enabled) Off When 0: Off When 1: On 5 ABC initialization Off When 0: Off When 1: On 6 SRAM access select When 0: When 0: Access to external SRAM	When 0 : When 1 : 2 Offset sca When 0 : When 1 :	an (read enal	bled)	Stop Start Stop						
4 ABC Enable (read enabled) When 0 : Off When 1 : On 5 ABC initialization When 0 : Off When 1 : On 6 SRAM access select When 0 : Access to external SRAM										
When 0: Off When 1: On 5 ABC initialization When 0: Off When 1: On 6 SRAM access select When 0: Access to external SRAM		ble (read ena	abled)	Start			•			
5 ABC initialization When 0 : Off When 1 : On 6 SRAM access select When 0 : Access to external SRAM				Off						
When 0: Off When 1: On 6 SRAM access select When 0: Access to external SRAM				On						
When 1: On 6 SRAM access select When 0: Access to external SRAM		lization								
6 SRAM access select When 0 : Access to external SRAM										
When 0 : Access to external SRAM		oona coloat		Un						
		Cess select		Acces	e to external	SDAM				
		★35 is 0 and	1 * 38 is 0 1 Pe							
2) When *35 is 0 and *38 is 1 : Read/write all addresses						lled binary dat				

Access to internal SRAM

6 bits \times 64 words (slice data)

6 bits × 64 words (white level)

Writing to SRAM from Address 8 is off

Writing to SRAM from Address 8 is on

Reading to SRAM from Address 8 is off

Reading to SRAM from Address 8 is on

1) When using simple binary processing : 6 bits imes 64 words (gamma correction data)

Image processing ASSP for FAX

FAX

*9	Binary vídeo signal output mode	Brass Marshard and Article
	When 0 :	Binary video signals are output as serial data.
	When 1:	Binary video signals are output as parallel data.
* 10	Parallel mode specification	First bit of bits and data a size of the tables as LOD
	When 0:	First bit of binary video signal is taken as LSB.
	When 1:	First bit of binary video signal is taken as MSB.
4 7	Binary video signal selection When 0	
		Black = 0, White = 1
	When 1:	Black = 1, White = 0
# 12	Offset correction When 0:	Off
	When 1:	On
* 13	Internal sample / hold timing	Demonstrated of Data and
	When 000 : When 001 :	Sampled at S1 cycle
		Sampled at S2 cycle
	When 010 :	Sampled at S3 cycle
	When 011 : When 100 :	Sampled at S4 cycle
		Sampled at S5 cycle
	When 101 :	Sampled at S6 cycle
	When 110 :	Sampled at S7 cycle
	When 111:	Sampled at S0 cycle
*14	A/D converter channel switching	
	When 0:	Connected to AIN0
	When 1:	Connected to AIN1
* 15	Image sensor	200
	When 0:	CCD
	When 1:	CIS
Φ ΙΟ	¢TG output logic	De status la sta
	When 0:	Positive logic
	When 1:	Negative logic
* 17	RS and CLP output logic	Desitive lesie
	When 0:	Positive logic
	When 1:	Negative logic
Ŧ 18	Clamping method	Dia da una trans
	When 0:	Bit clamping
	When 1:	Line clamping
* 19	ϕ 1 clock and RS output specification	
	1) ϕ 1 clock duty (when using CIS)	
	When 00 :	HIGH for S0 to S3 cycles, LOW for S4 to S7 cycles
	When 01:	HIGH for S0 to S3 cycles, LOW for S4 to S7 cycles
	When 10:	HIGH for S0 to S1 cycles, LOW for S2 to S7 cycles
	When 11:	HIGH for S0 to S5 cycles, LOW for S6 to S7 cycles
	2) RS output position (when using CCD)	
	When 00 :	Output at S5 cycle
	When 01:	Output at S6 cycle
≁20	¢TG pulse width	
	1) When using CCD	
	When 0:	Output at S1 to S6 cycles
	When 1:	Output at S0 to S7 cycles
	2) When using CIS	
	When 0:	Output at S1 to S0 cycles
	When 1:	Output at S0 to S7 cycles

•

÷

336

*21 Back register enable

When 0

When 1 :

* 22 Manuscript width specification

Register of Address F is valid. Register of Address FU is valid.

DB3	DB2	DB1	D80	Distortion correction width	Reading width	Reading position
0	0	0	0	1728	1728 (A4, 8 dots/mm or equivalent)	
0	0	0	1	2048	1728 (A4, 8 dots/mm or equivalent)	Center
0	0	1	0	2048	2048 (B4, 8 dots/mm or equivalent)	
0	0	1	1	2432	1728 (A4, 8 dots/mm or equivalent)	Center
0	1	0	0	2432	2048 (B4, 8 dots/mm or equivalent)	Center
0	1	0	1	2432	2432 (A3, 8 dots/mm or equivalent)	
0	1	1	0	2592	2592 (A4, 12 dots/mm or equivalent)	
0	1	1	1	3072	2592 (A4, 12 dots/mm or equivalent)	Center
1	0	0	0	3072	3072 (B4, 12 dots/mm or equivalent)	
1	0	0	1	3648	2592 (A4, 12 dots/mm or equivalent)	Center
1	0	1	0	3648	3072 (B4, 12 dots/mm or equivalent)	Center
1	0	1	1	3648	3648 (A3, 12 dots/mm or equivalent)	
1	1	0	0	3456	3456 (A4, 16 dots/mm or equivalent)	
1	1	0	1	4096	3456 (A4, 16 dots/mm or equivalent)	Center
1	1	1	0	4096	4096 (A4, 16 dots/mm or equivalent)	

*23 Numerator of reduction ratio in horizontal direction

*24 Denominator of reduction ratio in horizontal direction *23

The reduction ratio is set as shown below, using Address 8 (numerator) and Address 9 (denominator).

(value set for reduction ratio numerator) + 1 Reduction ratio = (value set for reduction ration denominator) + 1*25 Black follow-up speed When 0 1 ABC circuit not followed on dark background When 1 to 15: The larger the set value, the faster the ABC is followed on a dark background. *26 White follow-up speed ABC circuit not followed on light background When 0 1 When 1 to 15: The larger the set value, the faster the ABC is followed on a light background. *27 Binary parameter 1) For simple binary processing : Set the slice level. 2) For organizational dither processing : This parameter is invalid. 3) For error dispersion processing : Set the black level. * 28 Binary mode When 00 : Simple binary processing When 01 : Simple binary processing When 10 : Pseudo intermediate processing using organizational dither method When 11: Pseudo intermediate processing using error dispersion method * 29 Degree of edge enhancement in horizontal direction When 0 1 Edge enhancement off When 1 to 15: The larger the set value, the stronger the enhancement will be. * 30 Degree of edge enhancement in vertical direction When 0 1 Edge enhancement off When 1 to 15: The larger the set value, the stronger the enhancement will be.

337

*31 Edge enhancement correction parameter This parameter is used as a threshold to judge whether edge enhancement or smoothing is to be carried out when the amount of density of the pixel edge in question changes. *32 Degree of smoothing When 0: Smoothing function off When 1 to 6 : The larger the set value, the greater the degree of smoothing that is carried out. When 7: Use inhibited *33 Character enhancement parameter B When pseudo intermediate processing is used, this parameter is used as a threshold to determine whether or not edge enhancement is to be carried out when the amount of density in both the horizontal and vertical directions is changed. * 34 Character enhancement parameter A 1) This parameter defines character enhancement when pseudo intermediate processing is used. 2) When using the dither method When 000 : Character enhancement off When 001 to 111 : The larger the set value, the stronger the enhancement will be. 3) When using the error dispersion method When 000 : Character enhancement off When 001 to 111 : The larger the set value, the stronger the enhancement will be. *35 Applied binary enable When 0: When using simple binary processing, the slice level is determined by the binary parameter. When 1 : When using simple binary processing, the slice level is determined by the average density. *36 Expansion port enable When 0 : No expansion ports are used. When 1: Pin 16 (MA13) is used as the expansion port. *37 Expansion port data

 When 1:
 The expansion port data is 1.

 * 39
 Resetting the internal registers of Addresses 0 to 2 and Address FU clears the values to 0.

 The set values for other internal registers do not change when a reset is initiated.

The expansion port data is 0.

*40 Register setting unit

When Q :

1) The line clamping start and end positions can be specified in units of 1 pixel.

- 2) The distortion correction start position can be specified in units of 1 pixel.
- The ABC start and end positions can be specified in units of 16 pixels.
- *41 In the following cases, Address 8 should be used for reading and writing of data.
 - 1) Reading digital data after A/D conversion
 - 2) Reading and writing internal SRAM data3) Reading and writing external SRAM data

338

rohm

ROHM

ł

340

341

BU2135K

Application example

External dimensions (Units: mm)

rohm

Notes

- The contents described in this catalogue are correct as of March 1997.
- No unauthorized transmission or reproduction of this book, either in whole or in part, is permitted.
- The contents of this book are subject to change without notice. Always verify before use that the contents are the latest specifications. If, by any chance, a defect should arise in the equipment as a result of use without verification of the specifications, ROHM CO., LTD., can bear no responsibility whatsoever.
- Application circuit diagrams and circuit constants contained in this data book are shown as examples of standard use and operation. When designing for mass production, please pay careful attention to peripheral conditions.
- Any and all data, including, but not limited to application circuit diagrams, information, and various data, described in this catalogue are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO., LTD., disclaims any warranty that any use of such device shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes absolutely no liability in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices; other than for the buyer's right to use such devices itself, resell or otherwise dispose of the same; no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD., is granted to any such buyer.
- The products in this manual are manufactured with silicon as the main material.
- The products in this manual are not of radiation resistant design.

The products listed in this catalogue are designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers, or other safety devices) please be sure to consult with our sales representatives in advance.

- Notes when exporting
 - It is essential to obtain export permission when exporting any of the above products when it falls under the category of strategic material (or labor) as determined by foreign exchange or foreign trade control laws.
 - Please be sure to consult with our sales representatives to ascertain whether any product is classified as a strategic material.