Audio ICs

PLL frequency synthesizer for tuners BU2624AF

The BU2624AF is a PLL frequency synthesizer IC designed for use in car stereos, high-fidelity audio systems, and CD radio cassettes.

Featuring low power consumption, low superfluous radiation, two frequency measurement counter systems, and two phase comparison outputs, this chip is ideal for high-performance multi-band systems.

Applications

Car stereos, high-fidelity audio systems, radio cassettes, receivers, and other frequency generating devices

Features

- 1) Built-in high-speed prescaler can divide 130MHzVCO.
- Low power-consumption (during operation : 6.0mA PLL OFF 300 μ A Typ.)
- 3) Seven standard frequencies : 50kHz, 25kHz, 12.5kHz, 10kHz, 9kHz, 5kHz, and 1kHz.
- 4) Two counters for intermediate frequency detection

5) Unlock detection circuit

- 6) Five output ports (open drain)
- 7) SD input port
- 8) Two charge pump outputs
- 9) Serial data input (CE.CK.DA)
- 10) Control of phase comparison output

188

Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limits	Unit	Conditions
Supply voltage	VDD	-0.3~+7.0	v	VDD
Maximum input voltage 1	VIN1	-0.3~+7.0	v	CE,CK,DA,SD
Maximum input voltage 2	V _{IN2}	-0.3~Vpp+0.3	v	XIN, FMIN, AMIN, IF1, IF2, SD
Maximum output voltage 1	Vout1	-0.3~+10.0	v	P0,P1,P2,P3,P4,CD
Maximum output voltage 2	Vout2	-0.3~Vpp+0.3	v	PD1,PD2,XOUT
Maximum output current	Юυт	0~+4.0	mA	P ₀ ,P ₁ ,P ₂ ,P ₃ ,P ₄ ,CD
Power dissipation	Pd	450*	mW	· · ·
Operating temperature	Topr	-40~+85	ъ	
Storage temperature	Tstg	-55~+125	ĉ	· · ·

* When used with Ta at greater than 25 degrees Celslus, derate the power by 4.5 mW for every degree above 25 degrees.

Recommended operating conditions (Ta = 25° C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	V _{DD}	4.0	<u> </u>	6.0	V

Pin description

Pin No.	Symbol	Pin name	Function	I/O		
1	XOUT	Crystal oscillation	For generation of standard frequency and internal clock.	OUT		
2	XIN	terminal	Connected to 7.2 MHz crystal oscillator.	IN		
3	CE	Chip enable	When CE is H, DA (which is generated when CK starts)			
4	СК	Clock signal	goes to the internal shift register, and is latched according to the timing of CE shutdown. Also, output	IN		
5	DA	Serial data	data is generated from the CD terminal when CK starts up.			
6	CD	Count data	Frequency data and unlock data are output.			
7	P0		· · · · ·	Nch open drain		
8	P1					
9	P3	Output port	Controlled on the basis of input data.			
10	P4					
11	PD2	Phase comparison output	Operates in the same ways as PD1	3-state		
12	SD	Input port	Output to the CD terminal.	Schmidt input		
13	IF2	IF2 input	Intermediate frequency input			
14	IF1	IF1 input	Selected on the basis of input data.	IN		
15	P2	Output port	Controlled on the basis of input data.	Nch open drain		
16	AMIN	AM input	Local input for AM	IN		
17	FMIN	FM input	Local input for FM	IN		
18	Vod	Power supply	Power supply, with 4.0V to 6.0V applied voltage.			
19	PD1	Phase comparison output	High level when value obtained by dividing local output is higher than standard frequency. Low level when	3-state		
20	Vss	GROUND	value is lower. High impedance when value is same.			

ROHM

189

PLL frequency sythesizers

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition	IS .	
Supply current 1	DD1		6.0	10.0	mA	FM _{IN} =130MHz, 100mV	ms	
Quiescent circuit current	IDD2	—	0.3	1.0	mA	No input, PLL=OFF		
"H" level input voltage	Vін	0.8V _{DD}	_	_	V	CE, CK, DA, SD		
"L" level input voltage	VIL			0.2V _{DD}	V	CE, CK, DA, SD		
"H" level input current 1	Іінт	-	-	1.0	μA	CE, CK, DA, SD		
"H" level input current 2	Ііна	_	0.3	—	μA	XIN		
"H" level input current 3	Інз	<u> </u>	6.0	—	μA	FMIN, AMIN, IF1, IF2		
"L" level input current 1	l _{IL1}	-1.0	—	—	μA	CE, CK, DA, SD	VIN=VSS	
"L" level input current 2	I _{IL2}	· _	-0.3	—	μA	XIN	V _{IN} =V _{SS}	
"L" level input current 3	lı∟a	_	-0.6	-	μA	FMIN, AMIN, IF1, IF2	VIN=VSS	
"L" level output voltage 1	VoL1	- 1	0.2	0.5	V	P ₀ , P ₁ , P ₂ , P ₃ , P ₄ , CD	lo=1.0mA	
*OFF" level leak current 1	IOFF1	_	_	1.0	μA	P0, P1, P2, P3, P4, CD	Vo=10V	
"L" level output voltage 2	Vol2	_		0.3	V	FMIN, AMIN, IF1, IF2 Iour=0.1mA		
"H" level output voltage	Vон	V _{DD} 1.0	V _{DD} 0.25	_	v	PD1, PD2	Iout=-1.0mA	
"L" level output voltage	V _{OL4}	_	0.15	1.0	V	PD1, PD2	Iout=1.0mA	
"OFF" level leak current 2	IOFF2		_	100	nA	PD ₁ , PD ₂	V _{OUT} =V _{DD}	
"OFF" level leak current 3	IOFF3	-100	-	—	nA	PD ₁ , PD ₂	V _{OUT} =V _{SS}	
Internal feedback resistor 1	R _{F1}	—	10	_	MΩ	XIN		
Internal feedback resistor 2	Rf2	_	500	_	kΩ	FMIN, AMIN, IF1, IF2		
Input frequency 1	Fint	_	7.2	-	MHz	XIN, Signwave, C coup	ing	
Input frequency 2	F _{IN2}	10		130	MHz	FMIN, Signwave, C cou	pling V _{IN} =50mVrms	
Input frequency2-1	FIN2-1	20	-	180	MHz	FMIN, Signwave, C cou	pling V _{IN} =100mVrms	
Input frequency 3	Fins	0.5	-	30	MHz	AMIN, Signwave, C cou	pling V _{IN} =70mVrms	
Input frequency 4	F _{IN4}	0.4	_	16	MHz	IF1, IF2, Signwave, C c	oupling V _{IN} =70mVrms	
Input amplitude 1	FINI	50	_	1.5	Vrms	FMIN, Signwave, C cou	pling 10~130MHz	
Input amplitude 1-2	FIN1-2	100	_	1.5	Vrms	FMIN, Signwave, C cou	pling 130~180MHz	
Input amplitude 2	Fin2	70	-	1.5	Vrms	AMIN, IF1, IF2, Signwa	ve, C coupling	
Minimum pulse width	TW	1.0	_	—	μs	CK, DA		
Input rise time	TR	—	-	500	ns	CE, CK, DA		
Input fall time	TF		-	500	ns	CE, CK, DA		

O Not designed for radiation resistance.

190

ROHM

CE output is set to LO.

- Input done from C0.

* Data is output only when CT = 1 or GT = 1.

ROHM

191

High-frequency signal processors

Circuit operation

Explanation of the data

(1) Division data : For D_0 through D_{15} (When S = 1,

use D4 through D15.)

Do	D1	D ₂	D ₃	D₄	D5	D ₆	D7	Dβ	D9	D10	D11	D ₁₂	D13	D14	D ₁₅
amples															
rided			/												
quency= 1	=1106 (0	(D) ÷2= 0	=553(I 1	ン) =22 0	29 (H) 1	S=0 0	0	0	1	0	0	0	0	0	0
vided auencv=	=1107((D) =45	53 (H)	. 5	6=1, P	5=1									
1	1	0	0	1	0	1	0	0	0	1	0	0	0	0	0
vided quency=	≕926 (C)) =39B	E (H)	S= 0	=1, PS	≔0									

- 1: Begins measurement.
 - 0 : Resets internal counter, IF1 and IF2 go to pulldown.
- (3) Output port control data : Po, P1, P2, P3, P4
- (4) PL PH: Control of charge pump output PH = 0, PL = 0 PLL operation $PH=0, \ PL=1 \ PD_1 \ PD_2 \ LO \ level$ $\mathsf{PH}=\mathsf{1}, \quad \mathsf{PL}=\mathsf{0} \quad \mathsf{PD}_1 \quad \mathsf{PD}_2 \ \mathsf{HI} \ \mathsf{level}$ PH = 1, PL = 1 PD_1 PD_2 LO level

		Data			
d frequency	R ₂	Rı	Ro		
5kHz	0	0	0		
.5kHz	1	0	0		
0kHz	0	1	0		
0kHz	1	1	0		
škHz	0	0	1		
9kHz	1	0	1		
lkHz	0	1	1		
PLL OFF	1	1	1		

* FMIN = pulldown, AMIN = pulldown, PD = high impedance

- (6) S: switch between FMIN and AMIN 0: FMIN 1 CAMIN
- (7) PS: If this bit is set to ON while AMIN is selected, swallow counter division is possible.
- (8) IFS: Selection between IF1 and IF2 during IF count 0:IF1 1:IF2
- (9) GT: Frequency measurement time and unlock detection ON/OFF

СТ	GT	Frequency measurement	Unlock detection	Data output
0	0	OFF	OFF	NG
0	1	OFF	ON	
1	0	ON Gate time = 8 ms	ON	ОК
1	1	ON Gate time = 16 ms	ON	

(10) TS: Test data (0) is input

ROHM

Frequency counter

(1) Structure

(2) How the frequency counter operates When control data CT equals 1, the 20-bit counter and the amp go into operation. When CT equals 0, amp input goes to pulldown and the counter is reset.

Measuring time (gate pulse) is selected (8 ms/16 ms) on the basis of control data GT.

When control data CT equals 0, the counter is reset.

(3) Explanation of output data
D0: LSB D19: MSB
Unlock detection
When control data GT equals 1, or CT equals 1,

CD

the unlock detection circuit goes into operation for 8ms.

When CT equals 1, the unlock detection circuits stops operating before the frequency counter gate pulse is emitted.

When CT equals 0, or GT equals 0, the unlock detection circuit is reset.

Explanation of the output data

U0	U1	U2	U3					
0	0	0	0			ERR	<	1.1 <i>µ</i> s
1	0	0	0	1.1μs	<	ERR	<	2.2 μs
1	1	0	0	2.2μs	<	ERR	<	3.3 µs
1	1	1	0	3.3 µ s	<	ERR	<	4.4 µs
1	1	1	1	4.4 μs	<	ERR		

ROHM

193

PLL frequency sythesizers

High-frequency signal processors

Circuit operation

Frequency counter and unlock detection

(1) When CT = 1 : Frequency count and unlock detection are carried out.

BU2624AF

External dimensions (Unit: mm)

High-frequency signal processors PLL frequency sythesizers

ł

ROHM

195

Notes

- The contents described in this catalogue are correct as of March 1997.
- No unauthorized transmission or reproduction of this book, either in whole or in part, is permitted.
- The contents of this book are subject to change without notice. Always verify before use that the contents are the latest specifications. If, by any chance, a defect should arise in the equipment as a result of use without verification of the specifications, ROHM CO., LTD., can bear no responsibility whatsoever.
- Application circuit diagrams and circuit constants contained in this data book are shown as examples of standard use and operation. When designing for mass production, please pay careful attention to peripheral conditions.
- Any and all data, including, but not limited to application circuit diagrams, information, and various data, described in this catalogue are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO., LTD., disclaims any warranty that any use of such device shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes absolutely no liability in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices; other than for the buyer's right to use such devices itself, resell or otherwise dispose of the same; no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD., is granted to any such buyer.
- The products in this manual are manufactured with silicon as the main material.
- The products in this manual are not of radiation resistant design.

The products listed in this catalogue are designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers, or other safety devices) please be sure to consult with our sales representatives in advance.

- Notes when exporting
 - It is essential to obtain export permission when exporting any of the above products when it falls under the category of strategic material (or labor) as determined by foreign exchange or foreign trade control laws.
 - Please be sure to consult with our sales representatives to ascertain whether any product is classified as a strategic material.