

# CA3083

## General Purpose High Current N-P-N Transistor Array

March 1993

#### Features

- High I<sub>C</sub>..... 100mA Max
- Low V<sub>CE sat</sub> (at 50mA) ..... 0.7V Max
- Matched Pair (Q<sub>1</sub> and Q<sub>2</sub>)
  - V<sub>IO</sub> (V<sub>BE</sub> Matched) ......±5mV Max
  - Ι<sub>ΙΟ</sub> (at 1mA) ..... 2.5μA Max
- 5 Independent Transistors Plus Separate Substrate Connection

## Applications

- Signal Processing and Switching Systems Operating from DC to VHF
- Lamp and Relay Driver
- Differential Amplifier
- Temperature Compensated Amplifier
- Thyristor Firing
- See Application Note AN5296 "Applications of the CA3018 Circuit Transistor Array" for Suggested Applications

## Description

The CA3083 is a versatile array of five high current (to 100mA) n-p-n transistors on a common monolithic substrate. In addition, two of these transistors ( $Q_1$  and  $Q_2$ ) are matched at low current (i.e. 1mA) for applications in which offset parameters are of special importance.

Independent connections for each transistor plus a separate terminal for the substrate permit maximum flexibility in circuit design.

## **Ordering Information**

| PART<br>NUMBER | TEMPERATURE<br>RANGE | PACKAGE                   |  |  |
|----------------|----------------------|---------------------------|--|--|
| CA3083         | -55°C to +125°C      | 16 Lead Plastic DIP       |  |  |
| CA3083F        | -55°C to +125°C      | 16 Lead Ceramic DIP       |  |  |
| CA3083M        | -55°C to +125°C      | 16 Lead Narrow Body SOIC  |  |  |
| CA3083M96      | -55°C to +125°C      | 16 Lead Narrow Body SOIC* |  |  |

\* Denotes Tape and Reel

#### Pinout



CA3083 (PDIP, CDIP 150mil SOIC)

#### Absolute Maximum Ratings $(T_A = +25^{\circ}C)$

| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Any One Transistor500mWTotal Package750mW $T_A > +55^{\circ}C$ Derate at 6.67mW/°CJunction Temperature+175°CJunction Temperature (Plastic Package)+150°CLead Temperature (Soldering 10 Sec.)+300°C |

#### **Operating Conditions**

| Operating Temperature Range | $-55^{\circ}C \le T_{A} \le +125^{\circ}C$ |
|-----------------------------|--------------------------------------------|
| Storage Temperature Range   | $-65^{\circ}C \le T_{A} \le +150^{\circ}C$ |

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

#### **Electrical Specifications** T<sub>A</sub> = +25°C. For Equipment Design

|                                                        |                                                                               |                                                   |                           | LIMITS |      |      |       |
|--------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------|---------------------------|--------|------|------|-------|
| PARAMETERS SYMBOL TEST                                 |                                                                               | TEST CO                                           | NDITIONS                  | MIN    | TYP  | MAX  | UNITS |
| FOR EACH TRANSISTOR                                    |                                                                               |                                                   |                           |        |      |      | -     |
| Collector-to-Base Breakdown Voltage                    | $V_{(BR)CBO}$ $I_{C} = 100\mu A, I_{E} = 0$                                   |                                                   | 20                        | 60     | -    | V    |       |
| Collector-to-Emitter Breakdown Voltage                 | V <sub>(BR)CEO</sub>                                                          | $I_{(BR)CEO}$ $I_C = 1mA, I_B = 0$                |                           | 15     | 24   | -    | V     |
| Collector-to-Substrate Breakdown Voltage               | $V_{(BR)CIO}$ I <sub>CI</sub> = 100µA, I <sub>B</sub> = 0, I <sub>E</sub> = 0 |                                                   | 20                        | 60     | -    | V    |       |
| Emitter-to-Base Breakdown Voltage                      | V <sub>(BR)EBO</sub>                                                          | $I_{E} = 500 \mu A, I_{C} = 0$                    |                           | 5      | 6.9  | -    | V     |
| Collector-Cutoff-Current                               | I <sub>CEO</sub>                                                              | $V_{CE} = 10V, I_B = 0$                           |                           | -      | -    | 10   | μA    |
| Collector-Cutoff-Current                               | I <sub>CBO</sub>                                                              | $V_{CB} = 10V, I_E = 0$                           |                           | -      | -    | 1    | μA    |
| DC Forward-Current Transfer Ratio (Note 2) (Figure 1)  | h <sub>FE</sub>                                                               | $V_{CE} = 3V$                                     | $I_{\rm C} = 10 {\rm mA}$ | 40     | 76   | -    |       |
|                                                        |                                                                               |                                                   | $I_{\rm C} = 50 {\rm mA}$ | 40     | 75   | -    |       |
| Base-to-Emitter Voltage (Figure 2)                     | $V_{BE}$                                                                      | $V_{CE} = 3V, I_{C} = 10mA$                       |                           | 0.65   | 0.74 | 0.85 | V     |
| Collector-to-Emitter Saturation Voltage (Figures 3, 4) | V <sub>CE SAT</sub>                                                           | $I_{\rm C} = 50 {\rm mA}, I_{\rm B} = 5 {\rm mA}$ |                           | -      | 0.40 | 0.70 | V     |
| Gain Bandwidth Product                                 | f <sub>T</sub>                                                                | $V_{CE} = 3V, I_{C} = 10mA$                       |                           | -      | 450  | -    | MHz   |
| FOR TRANSISTORS Q1 AND Q2 (As a Differential           | Amplifier)                                                                    | 8                                                 |                           |        |      |      |       |
| Absolute Input Offset Voltage (Figure 6)               | V <sub>IO</sub>                                                               | $V_{CE} = 3V, I_C = 1mA$                          |                           | -      | 1.2  | 5    | mV    |
| Absolute Input Offset Current (Figure 7)               | I <sub>IO</sub>                                                               | $V_{CE} = 3V, I_C = 1mA$                          |                           | -      | 0.7  | 2.5  | μA    |

NOTE:

The collector of each transistor of the CA3083 is isolated from the substrate by an integral diode. The substrate must be connected to a
voltage which is more negative than any collector voltage in order to maintain isolation between transistors and provide normal transistor
action. To avoid undesired coupling between transistors, the substrate terminal (5) should be maintained at either DC or signal (AC)
ground. A suitable bypass capacitor can be used to establish a signal ground.

2. Actual forcing current is via the emitter for this test.



