CD54HC190, CD74HC190 CD54HC191, CD74HC191, CD54HCT191, CD74HCT191 SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL SCHS275E - MARCH 2002 - REVISED OCTOBER 2003 - 2-V to 6-V V_{CC} Operation ('HC190, 191) - 4.5-V to 5.5-V V_{CC} Operation ('HCT191) - Wide Operating Temperature Range of –55°C to 125°C - Synchronous Counting and Asynchronous Loading - Two Outputs for n-Bit Cascading - Look-Ahead Carry for High-Speed Counting - Balanced Propagation Delays and Transition Times - Standard Outputs Drive Up To 15 LS-TTL Loads - Significant Power Reduction Compared to LS-TTL Logic ICs # CD54HC190, 191; CD54HCT191 ... F PACKAGE CD74HC190 ... E, NS, OR PW PACKAGE CD74HC191, CD74HCT191 ... E OR M PACKAGE (TOP VIEW) #### description/ordering information The CD54/74HC190 are asynchronously presettable BCD decade counters, whereas the CD54/74HC191 and CD54/74HCT191 are asynchronously presettable binary counters. Presetting the counter to the number on preset data inputs (A–D) is accomplished by a low asynchronous parallel load (\overline{LOAD}) input. Counting occurs when \overline{LOAD} is high, count enable (\overline{CTEN}) is low, and the down/up (D/\overline{U}) input is either high for down counting or low for up counting. The counter is decremented or incremented synchronously with the low-to-high transition of the clock. #### ORDERING INFORMATION | TA | PACK | AGE [†] | ORDERABLE
PART NUMBER | TOP-SIDE
MARKING | |----------------|------------|------------------|--------------------------|---------------------| | | | | CD74HC190E | CD74HC190E | | | PDIP – E | Tube of 25 | CD74HC191E | CD74HC191E | | | | | CD74HCT191E | CD74HCT191E | | | | Tube of 40 | CD74HC191M | | | | SOIC - M | Reel of 2500 | CD74HC191M96 | HC191M | | | | Reel of 250 | CD74HC191MT | | | | | Tube of 40 | CD74HCT191M | HCT191M | | –55°C to 125°C | SOP - NS | Reel of 2000 | CD74HC190NSR | HC190M | | | | Tube of 90 | CD74HC190PW | | | | TSSOP - PW | Reel of 2000 | CD74HC190PWR | HJ190 | | | | Reel of 250 | CD74HC190PWT | | | | | | CD54HC190F3A | CD54HC190F3A | | | CDIP – F | Tube of 25 | CD54HC191F3A | CD54HC191F3A | | | | | CD54HCT191F3A | CD54HCT191F3A | [†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. #### description/ordering information (continued) When an overflow or underflow of the counter occurs, the MAX/MIN output, which is low during counting, goes high and remains high for one clock cycle. This output can be used for look-ahead carry in high-speed cascading (see Figure 1). The MAX/MIN output also initiates the ripple clock (\overline{RCO}) output, which normally is high, goes low, and remains low for the low-level portion of the clock pulse. These counters can be cascaded using \overline{RCO} (see Figure 2). If a decade counter is preset to an illegal state or assumes an illegal state when power is applied, it returns to the normal sequence in one or two counts, as shown in the state diagrams (see Figure 3). #### **FUNCTION TABLE** | | INP | JTS | | FUNCTION | |------|------|-----------------|-----|---------------------| | LOAD | CTEN | D/ U | CLK | FUNCTION | | Н | L | L | | Count up | | Н | L | Н | | Count down | | L | Х | Х | Х | Asynchronous preset | | Н | Н | Х | Х | No change | D/U or CTEN should be changed only when clock is high. X = Don't care # 'HC190 logic diagram # 'HC190 logic diagram (continued) # 'HC191, 'HCT191 logic diagram # 'HC191, 'HCT191 logic diagram (continued) # 'HC190 and 'HC191/HCT191 flip-flop #### typical load, count, and inhibit sequence for 'HC190 The following sequence is illustrated below: - 1. Load (preset) to BCD 7 - 2. Count up to 8, 9 (maximum), 0, 1, and 2 - 3. Inhibit - 4. Count down to 1, 0 (minimum), 9, 8, and 7 ## typical load, count, and inhibit sequence for 'HC191 and 'HCT191 The following sequence is illustrated below: - 1. Load (preset) to binary 13 - 2. Count up to 14, 15 (maximum), 0, 1, and 2 - 3. Inhibit - 4. Count down to 1, 0 (minimum), 15, 14, and 13 Figure 1. 'HC190 Synchronous n-Stage Counter With Parallel Gated Terminal Count Figure 2. 'HC191, 'HCT191 Synchronous n-Stage Counter With Parallel Gated Terminal Count NOTE: Illegal states in BCD counters corrected in one count NOTE: Illegal states in BCD counters corrected in one or two counts Figure 3. 'HC190 State Diagram # CD54HC190, CD74HC190 CD54HC191, CD74HC191, CD54HCT191, CD74HCT191 SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL SCHS275E - MARCH 2002 - REVISED OCTOBER 2003 #### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage range, V _{CC} | | 0.5 V to 7 V | |--|--|------------------| | Input clamp current, I _{IK} (V _I < 0 or V _I > V _{CC}) (se | e Note 1) | ±20 mA | | Output clamp current, IOK (VO < 0 or VO > VCO | c) (see Note 1) | ±20 mA | | Continuous output drain current per output, IO (| $(V_O = 0 \text{ to } V_{CC})$ | ±35 mA | | Continuous output source or sink current per ou | utput, I_O ($V_O = 0$ to V_{CC}) | ±25 mA | | Continuous current through V _{CC} or GND | | ±50 mA | | Package thermal impedance, θ_{JA} (see Note 2): | E package | 67°C/W | | | M package | 73°C/W | | | NS package | 64°C/W | | | PW package | 108°C/W | | Storage temperature range, T _{stg} | | . –65°C to 150°C | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. #### recommended operating conditions for 'HC190 and 'HC191 (see Note 3) | | | | T _A = 1 | 25°C | T _A = - | | T _A = - | | UNIT | |-----------------|---------------------------------------|-------------------------|--------------------|------|--------------------|------|--------------------|------|------| | | | | MIN | MAX | MIN | MAX | MIN | MAX | | | Vcc | Supply voltage | | 2 | 6 | 2 | 6 | 2 | 6 | V | | | | V _{CC} = 2 V | 1.5 | | 1.5 | | 1.5 | | | | VIH | High-level input voltage | V _{CC} = 4.5 V | 3.15 | | 3.15 | | 3.15 | | V | | | | V _{CC} = 6 V | 4.2 | | 4.2 | | 4.2 | | | | | | V _{CC} = 2 V | | 0.5 | | 0.5 | | 0.5 | | | ٧ _{IL} | Low-level input voltage | V _{CC} = 4.5 V | | 1.35 | | 1.35 | | 1.35 | V | | | | VCC = 6 V | | 1.8 | | 1.8 | | 1.8 | | | ٧ı | Input voltage | | 0 | VCC | 0 | VCC | 0 | VCC | V | | Vo | Output voltage | | 0 | VCC | 0 | VCC | 0 | VCC | V | | | | V _{CC} = 2 V | | 1000 | | 1000 | | 1000 | _ | | t _t | Input transition (rise and fall) time | V _{CC} = 4.5 V | | 500 | | 500 | | 500 | ns | | | | VCC = 6 V | | 400 | | 400 | | 400 | | NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. ## recommended operating conditions for 'HCT191 (see Note 4) | | | T _A = | 25°C | T _A = - | | T _A = - | | UNIT | |----------------|---------------------------------------|------------------|------|--------------------|-----|--------------------|-----|------| | | | MIN | MAX | MIN | MAX | MIN | MAX | | | VCC | Supply voltage | 4.5 | 5.5 | 4.5 | 5.5 | 4.5 | 5.5 | V | | VIH | High-level input voltage | 2 | | 2 | | 2 | | V | | VIL | Low-level input voltage | | 8.0 | | 0.8 | | 0.8 | V | | ٧ _I | Input voltage | | VCC | | VCC | | VCC | V | | ٧o | Output voltage | | VCC | | VCC | | VCC | V | | t _t | Input transition (rise and fall) time | | 500 | · | 500 | | 500 | ns | NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. ^{2.} The package thermal impedance is calculated in accordance with JESD 51-7. # CD54HC190, CD74HC190 CD54HC191, CD74HC191, CD54HCT191, CD74HCT191 SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL SCHS275E - MARCH 2002 - REVISED OCTOBER 2003 #### 'HC190, 'HC191 # electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | TEST CO | NDITIONS | VCC | T _A = 2 | 25°C | T _A = - | | T _A = - | | UNIT | |-----------------|----------------------------|----------------------------|-------|--------------------|------|--------------------|-----|--------------------|------|------| | | | | | MIN | MAX | MIN | MAX | MIN | MAX | | | | | | 2 V | 1.9 | | 1.9 | | 1.9 | | | | | | $I_{OH} = -20 \mu A$ | 4.5 V | 4.4 | | 4.4 | | 4.4 | | | | VOН | VI = VIH or VIL | | 6 V | 5.9 | | 5.9 | | 5.9 | | V | | | | $I_{OH} = -4 \text{ mA}$ | 4.5 V | 3.98 | | 3.7 | | 3.84 | | | | | | $I_{OH} = -5.2 \text{ mA}$ | 6 V | 5.48 | | 5.2 | | 5.34 | | | | | | | 2 V | | 0.1 | | 0.1 | | 0.1 | | | | | $I_{OL} = 20 \mu A$ | 4.5 V | | 0.1 | | 0.1 | | 0.1 | | | V _{OL} | $V_I = V_{IH}$ or V_{IL} | | 6 V | | 0.1 | | 0.1 | | 0.1 | V | | | | I _{OL} = 4 mA | 4.5 V | | 0.26 | | 0.4 | | 0.33 | | | | | I _{OL} = 5.2 mA | 6 V | | 0.26 | | 0.4 | | 0.33 | | | lį | VI = VCC or 0 | | 6 V | | ±0.1 | | ±1 | | ±1 | μΑ | | ICC | $V_I = V_{CC}$ or 0, | IO = 0 | 6 V | | 8 | | 160 | | 80 | μΑ | | Ci | | · | | | 10 | | 10 | | 10 | pF | # 'HCT191 electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | TEST CON | TEST CONDITIONS | | T _A = 25°C | | T _A = -55°C
TO 125°C | | T _A = -40°C
TO 85°C | | UNIT | | |--------------------|---|--------------------------|----------------|-----------------------|-----|------------------------------------|-----|-----------------------------------|------|------|----| | | | | Vcc | MIN | TYP | MAX | MIN | MAX | MIN | MAX | | | V | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | $I_{OH} = -20 \mu A$ | 45.77 | 4.4 | | | 4.4 | | 4.4 | | V | | VOH | VI = VIH or VIL | $I_{OH} = -4 \text{ mA}$ | 4.5 V | 3.98 | | | 3.7 | | 3.84 | | V | | ., | V VV | $I_{OL} = 20 \mu A$ | 451/ | | | 0.1 | | 0.1 | | 0.1 | | | V _{OL} | VI = VIH or VIL | $I_{OL} = 4 \text{ mA}$ | 4.5 V | | | 0.26 | | 0.4 | | 0.33 | ٧ | | lį | $V_I = V_{CC}$ to GND | | 5.5 V | | | ±0.1 | | ±1 | | ±1 | μΑ | | ICC | $V_I = V_{CC}$ or 0, | IO = 0 | 5.5 V | | | 8 | | 160 | | 80 | μА | | ΔI _{CC} † | One input at V _{CC} – Other inputs at 0 or | | 4.5 V to 5.5 V | | 100 | 360 | | 490 | | 450 | μΑ | | Ci | | | | | | 10 | | 10 | | 10 | pF | [†] Additional quiescent supply current per input pin, TTL inputs high, 1 unit load #### **HCT INPUT LOADING TABLE** | INPUTS | UNIT LOADS | |-----------------|------------| | A-D | 0.4 | | CLK | 1.5 | | LOAD | 1.5 | | D/ U | 1.2 | | CTEN | 1.5 | Unit load is ΔI_{CC} limit specified in electrical characteristics table, (e.g., 360 μA max at 25°C). # CD54HC190, CD74HC190 CD54HC191, CD74HC191, CD54HCT191, CD74HCT191 SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL SCHS275E - MARCH 2002 - REVISED OCTOBER 2003 #### 'HC190, 'HC191 timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 4) | ^f clock | | | VCC | | | 10 12 | 25°C | TO 8 | 5°C | UNIT | |--------------------|-------------------|-------------------------------|-------|-----|-----|-------|------|------|-----|------| | f _{clock} | | | | MIN | MAX | MIN | MAX | MIN | MAX | | | fclock | | | 2 V | | 6 | | 4 | | 5 | | | | Clock frequency† | | 4.5 V | | 30 | | 20 | | 25 | MHz | | | | | 6 V | | 35 | | 23 | | 29 | | | | | | 2 V | 80 | | 120 | | 100 | | | | | | LOAD low | 4.5 V | 16 | | 24 | | 20 | | | | | Dula a dissatta a | | 6 V | 14 | | 20 | | 17 | | | | t_W | Pulse duration | | 2 V | 100 | | 150 | | 125 | | ns | | | | CLK high or low | 4.5 V | 20 | | 30 | | 25 | | | | | | | 6 V | 17 | | 26 | | 21 | | | | | | | 2 V | 60 | | 90 | | 75 | | | | | | Data before LOAD ↑ | 4.5 V | 12 | | 18 | | 15 | | | | | | | 6 V | 10 | | 15 | | 13 | | | | | | | 2 V | 60 | | 90 | | 75 | | | | t _{su} | Setup time | CTEN before CLK↑ | 4.5 V | 12 | | 18 | | 15 | | ns | | | | | 6 V | 10 | | 15 | | 13 | | | | | | | 2 V | 90 | | 135 | | 115 | | | | | | D/U before CLK↑ | 4.5 V | 18 | | 27 | | 23 | | | | | | | 6 V | 15 | | 23 | | 20 | | | | | | | 2 V | 2 | | 2 | | 2 | | | | | | Data before LOAD↑ | 4.5 V | 2 | | 2 | | 2 | | | | | | | 6 V | 2 | | 2 | | 2 | | | | | | | 2 V | 2 | | 2 | | 2 | | | | ^t h | Hold time | CTEN before CLK↑ | 4.5 V | 2 | | 2 | | 2 | | ns | | | | | 6 V | 2 | | 2 | | 2 | | | | | | | 2 V | 0 | | 0 | | 0 | | | | | | D/ U before CLK↑ | 4.5 V | 0 | | 0 | | 0 | | | | | | | 6 V | 0 | | 0 | | 0 | | | | | | | 2 V | 60 | | 90 | | 75 | | | | trec | Recovery time | LOAD inactive before CLK↑ | 4.5 V | 12 | | 18 | | 15 | | ns | | 100 | | | 6 V | 10 | | 15 | | 13 | | _ | [†] Applies to noncascaded operation only. With cascaded counters, clock-to-terminal count propagation delays, CTEN-to-clock setup times, and CTEN-to-clock hold times determine maximum clock frequency. For example, with these HC devices: $$f_{max}(CLK) = \frac{1}{CLK - to-MAX/MIN \ propagation \ delay + \overline{CTEN} - to-CLK \ setup \ time + \overline{CTEN} - to-CLK \ hold \ time} = \frac{1}{42 + 12 + 2} \approx 18 \ MHz$$ 'HC190, 'HC191 # switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 4) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | LOAD
CAPACITANCE | Vcс | T, | 4 = 25°C | ; | T _A = - | -55°C
25°C | T _A = - | -40°C
5°C | UNIT | |-----------------|-----------------|----------------|------------------------|-------|-----|----------|-----|--------------------|---------------|--------------------|--------------|------| | | (INPUT) | (001701) | CAPACITANCE | | MIN | TYP | MAX | MIN | MAX | MIN | MAX | | | | | | | 2 V | 6 | | | 4 | | 5 | | | | fmax | | | | 4.5 V | 30 | | | 20 | | 25 | | MHz | | | | | | 6 V | 35 | | | 23 | | 29 | | | | | | | | 2 V | | | 195 | | 295 | | 245 | | | | LOAD | Q | C _L = 50 pF | 4.5 V | | | 39 | | 59 | | 49 | | | | LOAD | Q | | 6 V | | | 33 | | 50 | | 42 | | | | | | C _L = 15 pF | 5 V | | 16 | | | | | | | | | | | | 2 V | | | 175 | | 265 | | 220 | | | | A, B, C, | Q | C _L = 50 pF | 4.5 V | | | 35 | | 53 | | 44 | | | | or D | Q | | 6 V | | | 30 | | 45 | | 37 | | | | | | $C_L = 15 pF$ | 5 V | | 14 | | | | | | | | | | | | 2 V | | | 170 | | 255 | | 215 | | | | CLK | Q | C _L = 50 pF | 4.5 V | | | 34 | | 51 | | 43 | | | | CLK | Q | | 6 V | | | 29 | | 43 | | 37 | | | | | | C _L = 15 pF | 5 V | | 14 | | | | | | | | | | | | 2 V | | | 125 | | 190 | | 155 | | | | CLK | RCO | C _L = 50 pF | 4.5 V | | | 25 | | 38 | | 31 | | | | CLK | KCO | | 6 V | | | 21 | | 32 | | 26 | | | | | | C _L = 15 pF | 5 V | | 10 | | | | | | ns | | ^t pd | | | | 2 V | | | 210 | | 315 | | 265 | 115 | | | CLK | MAX/MIN | C _L = 50 pF | 4.5 V | | | 42 | | 63 | | 53 | | | | CLK | IVIAA/IVIIIN | | 6 V | | | 36 | | 54 | | 45 | | | | | | C _L = 15 pF | 5 V | | 18 | | | | | | | | | | | | 2 V | | | 150 | | 225 | | 190 | | | | D/ U | RCO | C _L = 50 pF | 4.5 V | | | 30 | | 45 | | 38 | | | | D/0 | RCO | | 6 V | | | 26 | | 38 | | 33 | | | | | | C _L = 15 pF | 5 V | | 12 | | | | | | | | | | | | 2 V | | | 165 | | 250 | | 205 | | | | D/ U | MAX/MIN | C _L = 50 pF | 4.5 V | | | 33 | | 50 | | 41 | | | | 5,0 | INICAZA/IVIIIN | | 6 V | | | 28 | | 43 | | 35 | | | | | | C _L = 15 pF | 5 V | | 13 | | | | | | | | | | | | 2 V | | | 125 | | 190 | | 155 | | | | CTEN | RCO | C _L = 50 pF | 4.5 V | | | 25 | | 38 | | 31 | | | | OILIN | 1.00 | | 6 V | | | 21 | | 32 | | 26 | | | | | | C _L = 15 pF | 5 V | | 10 | | | | | | | | | | | | 2 V | | | 75 | | 110 | | 95 | | | t _t | | Any | $C_L = 50 pF$ | 4.5 V | | | 15 | | 22 | | 19 | ns | | | | | | 6 V | | | 13 | | 19 | | 16 | | #### 'HCT191 ## timing requirements over recommended operating free-air temperature range V_{CC} = 4.5 V (unless otherwise noted) (see Figure 5) | | | | T _A = | 25°C | T _A = - | | T _A = - | | UNIT | |------------------|-----------------|---------------------------|------------------|------|--------------------|-----|--------------------|-----|------| | | | | MIN | MAX | MIN | MAX | MIN | MAX | | | fclock | Clock frequency | | | 30 | | 20 | | 25 | MHz | | | Pulse duration | LOAD low | 16 | | 24 | | 20 | | | | t _W | Pulse duration | CLK high or low | 20 | | 30 | | 25 | | ns | | | | Data before LOAD↑ | 12 | | 18 | | 15 | | | | t _{su} | Setup time | CTEN before CLK↑ | 12 | | 18 | | 15 | | ns | | | | D/U before CLK↑ | 18 | | 27 | | 23 | | | | | | Data before LOAD↑ | 2 | | 2 | | 2 | | | | t _h | Hold time | CTEN before CLK↑ | 2 | | 2 | | 2 | | ns | | | | D/U before CLK↑ | 0 | | 0 | | 0 | | | | t _{rec} | Recovery time | LOAD inactive before CLK↑ | 12 | | 18 | | 15 | | ns | #### 'HCT191 # switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 5) | PARAMETER | FROM | TO | LOAD | Vcc | Т, | λ = 25°C | ; | T _A = - | | | Γ _A = -40°C
TO 85°C | | |------------------|----------|--------------|-------------------------|-------|-----|----------|-----|--------------------|-----|-----|-----------------------------------|-----| | | (INPUT) | (OUTPUT) | CAPACITANCE | | MIN | TYP | MAX | MIN | MAX | MIN | MAX | | | f _{max} | | | | 4.5 V | 30 | | | 20 | | 25 | | MHz | | | LOAD | | $C_{L} = 50 \text{ pF}$ | 4.5 V | | | 40 | | 60 | | 50 | | | | LOAD | Q | C _L = 15 pF | 5 V | | 17 | | | | | | | | | A, B, C, | | $C_L = 50 pF$ | 4.5 V | | | 38 | | 57 | | 48 | | | | or D | Q | $C_L = 15 pF$ | 5 V | | 16 | | | | | | | | | CLIV | | C _L = 50 pF | 4.5 V | | | 35 | | 53 | | 44 | | | | CLK | RCO | C _L = 15 pF | 5 V | | 14 | | | | | | | | | CLIK | | C _L = 50 pF | 4.5 V | | | 27 | | 41 | | 34 | | | | CLK | Q | C _L = 15 pF | 5 V | | 11 | | | | | | | | ^t pd | CLIK | BAAV/BAINI | $C_{L} = 50 \text{ pF}$ | 4.5 V | | | 42 | | 63 | | 53 | ns | | | CLK | MAX/MIN | C _L = 15 pF | 5 V | | 18 | | | | | | | | | D/II | RCO | C _L = 50 pF | 4.5 V | | | 30 | | 45 | | 38 | | | | D/Ū | RCO | C _L = 15 pF | 5 V | | 12 | | | | | | | | | | NA A V/NAINI | C _L = 50 pF | 4.5 V | | | 38 | | 57 | | 48 | | | | D/Ū | MAX/MIN | C _L = 15 pF | 5 V | | 16 | | | | | | | | | CTEN | | C _L = 50 pF | 4.5 V | | | 27 | | 41 | | 34 | | | | CIEN | RCO | C _L = 15 pF | 5 V | | 11 | | | | | | | | t _t | | Any | C _L = 50 pF | 4.5 V | | | 15 | | 22 | | 19 | ns | # CD54HC190, CD74HC190 CD54HC191, CD74HC191, CD54HCT191, CD74HCT191 SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL SCHS275E - MARCH 2002 - REVISED OCTOBER 2003 # operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ | PARAMETER | | | | | | |-----------------|-------------------------------|---------|----|----|--| | | | 'HC190 | 59 | | | | C _{pd} | Power dissipation capacitance | 'HC191 | 55 | pF | | | | | 'HCT191 | 68 | | | #### PARAMETER MEASUREMENT INFORMATION - 'HC190, 'HC191 NOTES: A. C_I includes probe and test-fixture capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_f = 6 ns. - D. For clock inputs, f_{max} is measured with the input duty cycle at 50%. - E. The outputs are measured one at a time with one input transition per measurement. - F. tpLz and tpHz are the same as tdis. - G. tpzL and tpzH are the same as ten. - H. tpl H and tpHI are the same as tpd. Figure 4. Load Circuit and Voltage Waveforms #### PARAMETER MEASUREMENT INFORMATION - 'HCT191 - NOTES: A. C_I includes probe and test-fixture capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_f = 6 \text{ ns}$, $t_f = 6 \text{ ns}$. - D. For clock inputs, f_{max} is measured with the input duty cycle at 50%. - E. The outputs are measured one at a time with one input transition per measurement. - F. tpLz and tpHz are the same as tdis. - G. tpzL and tpzH are the same as ten. - H. tpLH and tpHL are the same as tpd. Figure 5. Load Circuit and Voltage Waveforms 5-Sep-2011 #### **PACKAGING INFORMATION** | Orderable Device | Status ⁽¹⁾ | Package Type | Package
Drawing | Pins | Package Qty Eco Plan ⁽²⁾ | | Lead/
Ball Finish | MSL Peak Temp ⁽³⁾ | Samples
(Requires Login) | | |------------------|-----------------------|--------------|--------------------|------|-------------------------------------|----------------------------|----------------------|------------------------------|-----------------------------|--| | 5962-8867101EA | ACTIVE | CDIP | J | 16 | 1 | TBD | Call TI | Call TI | | | | 5962-8994601EA | ACTIVE | CDIP | J | 16 | 1 | TBD | Call TI | Call TI | | | | CD54HC190F3A | ACTIVE | CDIP | J | 16 | 1 | TBD | A42 | N / A for Pkg Type | | | | CD54HC191F3A | ACTIVE | CDIP | J | 16 | 1 | TBD | A42 | N / A for Pkg Type | | | | CD54HCT191F3A | ACTIVE | CDIP | J | 16 | 1 | TBD | A42 | N / A for Pkg Type | | | | CD74HC190E | ACTIVE | PDIP | N | 16 | 25 | Pb-Free (RoHS) | CU NIPDAU | N / A for Pkg Type | | | | CD74HC190EE4 | ACTIVE | PDIP | N | 16 | 25 | Pb-Free (RoHS) | CU NIPDAU | N / A for Pkg Type | | | | CD74HC190NSR | ACTIVE | SO | NS | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | | CD74HC190NSRE4 | ACTIVE | SO | NS | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | | CD74HC190NSRG4 | ACTIVE | SO | NS | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | | CD74HC190PW | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | | CD74HC190PWE4 | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | | CD74HC190PWG4 | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | | CD74HC190PWR | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | | CD74HC190PWRE4 | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | | CD74HC190PWRG4 | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | | CD74HC190PWT | ACTIVE | TSSOP | PW | 16 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | | CD74HC190PWTE4 | ACTIVE | TSSOP | PW | 16 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | | CD74HC190PWTG4 | ACTIVE | TSSOP | PW | 16 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | | CD74HC191E | ACTIVE | PDIP | N | 16 | 25 | Pb-Free (RoHS) | CU NIPDAU | N / A for Pkg Type | | | | CD74HC191EE4 | ACTIVE | PDIP | N | 16 | 25 | Pb-Free (RoHS) | CU NIPDAU | N / A for Pkg Type | | | www.ti.com 5-Sep-2011 | Orderable Device | Status ⁽¹⁾ | Package Type | Package
Drawing | Pins | Package Qty | Eco Plan ⁽²⁾ | Lead/
Ball Finish | MSL Peak Temp ⁽³⁾ | Samples
(Requires Login) | |------------------|-----------------------|--------------|--------------------|------|-------------|----------------------------|----------------------|------------------------------|-----------------------------| | CD74HC191M | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74HC191M96 | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74HC191M96E4 | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74HC191M96G4 | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74HC191ME4 | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74HC191MG4 | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74HC191MT | ACTIVE | SOIC | D | 16 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74HC191MTE4 | ACTIVE | SOIC | D | 16 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74HC191MTG4 | ACTIVE | SOIC | D | 16 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74HCT191E | ACTIVE | PDIP | N | 16 | 25 | Pb-Free (RoHS) | CU NIPDAU | N / A for Pkg Type | | | CD74HCT191EE4 | ACTIVE | PDIP | N | 16 | 25 | Pb-Free (RoHS) | CU NIPDAU | N / A for Pkg Type | | | CD74HCT191M | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74HCT191ME4 | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74HCT191MG4 | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | ⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. **TBD:** The Pb-Free/Green conversion plan has not been defined. ⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. ## PACKAGE OPTION ADDENDUM 5-Sep-2011 **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL. Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF CD54HC190, CD54HC191, CD54HC191, CD74HC190, CD74HC191, CD74HC191: Catalog: CD74HC190, CD74HC191, CD74HCT191 Military: CD54HC190, CD54HC191, CD54HCT191 NOTE: Qualified Version Definitions: Catalog - TI's standard catalog product Military - QML certified for Military and Defense Applications # PACKAGE MATERIALS INFORMATION www.ti.com 14-Jul-2012 ## TAPE AND REEL INFORMATION #### **REEL DIMENSIONS** #### **TAPE DIMENSIONS** | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### TAPE AND REEL INFORMATION #### *All dimensions are nominal | All dimensions are nominal | | | | | | | | | | | | | |----------------------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | | CD74HC190NSR | SO | NS | 16 | 2000 | 330.0 | 16.4 | 8.2 | 10.5 | 2.5 | 12.0 | 16.0 | Q1 | | CD74HC190PWR | TSSOP | PW | 16 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | | CD74HC190PWT | TSSOP | PW | 16 | 250 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | | CD74HC191M96 | SOIC | D | 16 | 2500 | 330.0 | 16.4 | 6.5 | 10.3 | 2.1 | 8.0 | 16.0 | Q1 | www.ti.com 14-Jul-2012 *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |--------------|--------------|-----------------|------|------|-------------|------------|-------------| | CD74HC190NSR | SO | NS | 16 | 2000 | 367.0 | 367.0 | 38.0 | | CD74HC190PWR | TSSOP | PW | 16 | 2000 | 367.0 | 367.0 | 35.0 | | CD74HC190PWT | TSSOP | PW | 16 | 250 | 367.0 | 367.0 | 35.0 | | CD74HC191M96 | SOIC | D | 16 | 2500 | 333.2 | 345.9 | 28.6 | #### 14 LEADS SHOWN - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package is hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. - E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20. # N (R-PDIP-T**) # PLASTIC DUAL-IN-LINE PACKAGE 16 PINS SHOWN - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. # D (R-PDS0-G16) ## PLASTIC SMALL OUTLINE - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AC. # D (R-PDSO-G16) # PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. PW (R-PDSO-G16) # PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side. - E. Falls within JEDEC MO-153 # PW (R-PDSO-G16) # PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. ## **MECHANICAL DATA** # NS (R-PDSO-G**) # 14-PINS SHOWN #### PLASTIC SMALL-OUTLINE PACKAGE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15. #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements. #### Products Applications Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers DI P® Products Consumer Electronics www.dlp.com www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/medical Interface interface.ti.com Medical www.ti.com/security Power Mgmt <u>power.ti.com</u> Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u> Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>