National Semiconductor COP620C/COP621C/COP622C/COP640C/COP641C/ COP642C/COP820C/COP821C/COP822C/COP840C/ COP841C/COP842C Single-Chip microCMOS **Microcontrollers**

General Description

The COP820C and COP840C are members of the COPS™ microcontroller family. They are fully static parts, fabricated using double-metal silicon gate microCMOS technology. This low cost microcontroller is a complete microcomputer containing all system timing, interrupt logic, ROM, RAM, and I/O necessary to implement dedicated control functions in a variety of applications. Features include an 8-bit memory mapped architecture, MICROWIRE/PLUS™ serial I/O, a 16-bit timer/counter with capture register and a multisourced interrupt. Each I/O pin has software selectable options to adapt the COP820C and COP840C to the specific application. The part operates over a voltage range of 2.5 to 6.0V. High throughput is achieved with an efficient, regular instruction set operating at a 1 microsecond per instruction rate. The part may be operated in the ROMless mode to provide for accurate emulation and for applications requiring external program memory.

Features

- Low Cost 8-bit microcontroller
- Fully static CMOS
- 1 μs instruction time (20 MHz clock)
- Low current drain (2.2 mA at 3 µs instruction rate) Low current static HALT mode (Typically < 1 μ A)
- Single supply operation: 2.5 to 6.0V
- 1024 bytes ROM/64 Bytes RAM—COP820C
- 2048 bytes ROM/128 Bytes RAM—COP840C

- 16-bit read/write timer operates in a variety of modes - Timer with 16-bit auto reload register
 - 16-bit external event counter
- Timer with 16-bit capture register (selectable edge)
- Multi-source interrupt
 - Reset master clear
 - External interrupt with selectable edge
 - Timer interrupt or capture interrupt
 - Software interrupt
- 8-bit stack pointer (stack in RAM)
- Powerful instruction set, most instructions single byte
- BCD arithmetic instructions
- MICROWIRE PLUS™ serial I/O
- 28 pin package (optionally 24 or 20 pin package)
- 24 input/output pins (28-pin package)
- Software selectable I/O options (TRI-STATE®, pushpull, weak pull-up)
- Schmitt trigger inputs on Port G
- Temperature ranges: -40°C to +85°C, -55°C to +125°C
- ROMIess mode for accurate emulation and external program capability-expandable to 32k bytes in ROMless mode
- Form, fit and function EEPROM emulation device (COP8720C)
- Piggyback emulation devices (COP820CP/COP840CP)
- Fully supported by National's MOLETM development system

Block Diagram

COP820C/COP821C/COP822C/COP840C/COP841C/COP842C Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 Supply Voltage (V_{CC})
 7V

 Voltage at any Pin
 -0.3V to V_{CC} + 0.3V

 ESD Susceptibility (Note 4)
 2000V

 Total Current into V_{CC} Pin (Source)
 50 mA

Total Current out of GND Pin (Sink) Storage Temperature Range 60 mA 65°C to + 140°C

Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC Electrical Characteristics $-40^{\circ}C \le T_A \le +85^{\circ}C$ unless otherwise specified

Parameter	Condition	Min	Тур	Max	Units
Operating Voltage Power Supply Ripple (Note 1)	Peak to Peak	2.5		6.0 0.1 V _{CC}	v v
Supply Current High Speed Mode, CKI = 20 MHz Normal Mode, CKI = 5 MHz Normal Mode, CKI = 2 MHz (Note 2) HALT Current (Note 3)	$V_{CC} = 6V, tc = 1 \ \mu s$ $V_{CC} = 6V, tc = 2 \ \mu s$ $V_{CC} = 2.5V, tc = 5 \ \mu s$ $V_{CC} = 6V, CKI = 0 \ MHz$		<1	9 4 0.7 10	mA mA mA
Input Levels RESET, CKI Logic High Logic Low All Other Inputs		0.9 V _{CC} 0.7 V _{CC}		0.1 V _{CC}	v v v
Logic High Logic Low		0.7 VCC		0.2 V _{CC}	v
Hi-Z Input Leakage Input Pullup Current	$V_{CC} = 6.0V$ $V_{CC} = 6.0V$	-2 40		+ 2 250	μΑ μΑ
G Port Input Hysteresis			0.05 V _{CC}		V
Output Current Levels D Outputs Source Sink	$V_{CC} = 4.5V, V_{OH} = 3.8V$ $V_{CC} = 2.5V, V_{OH} = 1.8V$ $V_{CC} = 4.5V, V_{OL} = 1.0V$ $V_{CC} = 2.5V, V_{OI} = 0.4V$	0.4 0.2 10 2			mA mA mA mA
All Others Source (Weak Pull-Up) Source (Push-Pull Mode)	$V_{CC} = 4.5V, V_{OH} = 3.2V$ $V_{CC} = 2.5V, V_{OH} = 1.8V$ $V_{CC} = 4.5V, V_{OH} = 3.8V$ $V_{CC} = 2.5V, V_{OH} = 1.8V$	10 2.5 0.4 0.2		110 33	μΑ μΑ mA
Sink (Push-Pull Mode)	$V_{CC} = 4.5V, V_{OL} = 0.4V$ $V_{CC} = 2.5V, V_{OL} = 0.4V$	1.6 0.7			mA
TRI-STATE Leakage Allowable Sink/Source Current Per Pin	+	-2.0		+2.0	μΑ
D Outputs (Sink) All Others				15 3	mA mA
Maximum Input Current (Note 5) Without Latchup (Room Temp)	Room Temp			±100	mA
RAM Retention Voltage, Vr	500 ns Rise and Fall Time (Min)	2.0			v
Input Capacitance				7	pF
Load Capacitance on D2				1000	pF

Note 1: Rate of voltage change must be less than 0.5V/ms.

Note 2: Supply current Is measured after running 2000 cycles with a square wave CKI input, CKO open, inputs at rails and outputs open.

Note 3: The HALT mode will stop CKI from oscillating in the RC and the Crystal configurations. Test conditions: All inputs tied to V_{CC}, L and G ports TRI-STATE and tied to ground, all outputs low and tied to ground.

Note 4: Human body mode, 100 pF through 1500Ω .

Note 5: Except pins G6, G7, RESET

pins G6, RESET: + 60 mA, - 100 mA pin G7: + 100 mA, - 25 mA Sampled but not 100% tested.

Parameter		-40°C < T _A < +8 Condition		Min	Тур	Max	Units
Instruction Cycle Time (tc)		Condition		MILL	Тур	max	Units
High Speed Mode	Vcc	; ≥ 4.5V		1		DC	μs
(Div-by 20)		$V \leq V_{CC} < 4.5V$		2.5	(DC	μs
Normal Mode		; ≥ 4.5V		2	í	DC	μs
(Div-by 10)	2.5	√ ≤ V _{CC} < 4.5V		5	1	DC	μs
R/C Oscillator Mode		; ≥ 4.5V		3 7.5	ł	DC	μs
(Div-by 10)	2.5	$2.5V \le V_{\rm CC} < 4.5V$			L	DC	μs
CKI Clock Duty Cycle (Note 6)		fr = Max (÷20 Mode)			1	66	%
Rise Time (Note 6)		fr = 20 MHz Ext Clock			{	12	ns
Fall Time (Note 6)		20 MHz Ext Clock			<u> </u>	8	ns
Inputs		N A EV		000		1	
ISETUP		> 24.5V		200 500	{		ns
tuese		/ ≤ V _{CC} < 4.5V ; ≥ 4.5V		60	1	1	ns ns
^t HOLD		$V \le V_{CC} < 4.5V$		150		1	ns
Output Propagation Delay		$= 100 \text{pF}, \text{R}_{\text{L}} = 2.2$	10		<u>├</u> ────		<u>├</u>
PD1, PD0		100 pr , nL - 2.2	~**			1	
SO, SK	Vcc	; ≥ 4.5V				0.7	μs
	2.5	$\sqrt{4.5V} \le V_{\rm CC} \le 4.5V$	1		1	1.75	μs
All Others		;≥ 4.5V			1	1	μs
		$V \leq V_{\rm CC} < 4.5V$			I	2.5	μs
MICROWIRE™ Setup Time (tUW	/S)			20		1	ns
MICROWIRE Hold Time (tuwh)				56	1	1 .	ns
MICROWIRE Output	•				1		
Propagation Delay (t _{UPD})					·	220	ns
nput Pulse Width	ļ				1		
Interrupt Input High Time	ļ		1	tc	1	1. Sec. 1. Sec	
Interrupt Input Low Time	[to			
Timer Input High Time	1			ţc	1		
Timer Input Low Time				to			
Reset Pulse Width	<u> </u>			1.0			μs
ote 6: Parameter sampled but not 100%	tested.						
C Electrical Charac	cteristics	in ROMIess Mode -	40°C < T _A	< 85°C	unless othe	wise specified	
Parameter	C	ondition	Min		Тур	Max	Units
Instruction Cycle Time (tc)							
High Speed Mode	$V_{CC} \ge 4.5$	iv.			2	DC	μs
(Div-by 20)	2.5V ≤ V _C				5	DC	μs
Normal Mode	$V_{CC} \ge 4.5$		1		4	DC	μs
(Div-by 10)	2.5V ≤ V _C	_{CC} < 4.5V			10	DC	μs
R/C Oscillator Mode	$V_{CC} \ge 4.5$	ŠV.			6	DC	μs
	2.5V ≤ V _C	_{2C} < 4.5V			15	DC	μs
		+ 20 Mode)	40			60	%
					04		ns
Rise Time	fr = 10 M	Hz Ext Clock			24		ns
CKI Clock Duty Clock Rise Time Fall Time	fr = 10 M				24 16		
Rise Time Fall Time Inputs	fr = 10 M fr = 10 M	Hz Ext Clock Hz Ext Clock			16		
Rise Time Fall Time	$fr = 10 M$ $fr = 10 M$ $V_{CC} \ge 4.5$	Hz Ext Clock Hz Ext Clock			16 400		ns
Rise Time Fall Time Inputs ^t SETUP	fr = 10 M fr = 10 M $V_{CC} \ge 4.5$ $2.5V \le V_{CC}$	Hz Ext Clock Hz Ext Clock W C < 4.5V			16 400 800		ns ns
Rise Time Fall Time Inputs	$\begin{array}{l} {\rm fr} = 10 \ {\rm M} \\ {\rm fr} = 10 \ {\rm M} \\ \\ {\rm V}_{\rm CC} \geq 4.5 \\ {\rm 2.5V} \leq {\rm V}_{\rm CC} \\ {\rm V}_{\rm CC} \geq 4.5 \end{array}$	Hz Ext Clock Hz Ext Clock V C < 4.5V			16 400 800 120		NS NS NS
Rise Time Fall Time Inputs ^t SETUP ^t HOLD	$fr = 10 M fr = 10 M V_{CC} \ge 4.5 2.5V \le V_{C} V_{CC} \ge 4.5 2.5V \le V_{C} $	Hz Ext Clock Hz Ext Clock 00 < 4.5V 10 < 4.5V 10 < 4.5V			16 400 800		ns ns
Rise Time Fall Time Inputs tSETUP tHOLD Output Propagation Delay	$fr = 10 M fr = 10 M V_{CC} \ge 4.5 2.5V \le V_{C} V_{CC} \ge 4.5 2.5V \le V_{C} $	Hz Ext Clock Hz Ext Clock V C < 4.5V			16 400 800 120		NS NS NS
Rise Time Fall Time Inputs ^t SETUP ^t HOLD Output Propagation Delay ^t PD1, tPD0	$fr = 10 M$ $fr = 10 M$ $V_{CC} \ge 4.5$ $2.5V \le V_{C}$ $V_{CC} \ge 4.5$ $2.5V \le V_{C}$ $C_{L} = 100$	Hz Ext Clock Hz Ext Clock $V_{CC} < 4.5V$ $V_{CC} < 4.5V$ $V_{CC} < 4.5V$ pF, R _L = 2.2 kΩ			16 400 800 120 300		ns ns ns ns
Rise Time Fall Time Inputs tSETUP tHOLD Output Propagation Delay	$fr = 10 \text{ M}$ $fr = 10 \text{ M}$ $V_{CC} \ge 4.5$ $2.5V \le V_{C}$ $V_{CC} \ge 4.5$ $2.5V \le V_{C}$ $C_{L} = 100$ $V_{CC} \ge 4.5$	Hz Ext Clock Hz Ext Clock $V_{CC} < 4.5V$ $V_{CC} < 4.5V$ pF, R _L = 2.2 kΩ			16 400 800 120 300		ns ns ns ns
Rise Time Fall Time Inputs ^t SETUP ^t HOLD Output Propagation Delay ^t PD1, ^t PD0 SO, SK	$fr = 10 \text{ M}$ $fr = 10 \text{ M}$ $V_{CC} \ge 4.5$ $2.5V \le V_{C}$ $V_{CC} \ge 4.5$ $2.5V \le V_{C}$ $C_{L} = 100$ $V_{CC} \ge 4.5$ $2.5V \le V_{C}$	Hz Ext Clock Hz Ext Clock $V_{CC} < 4.5V$ $V_{CC} < 4.5V$ pF, R _L = 2.2 k Ω $V_{CC} < 4.5V$			16 400 800 120 300 1.4 3.5		ns ns ns ns us µs
Rise Time Fall Time Inputs ¹ SETUP ¹ HOLD Output Propagation Delay ¹ PD1, ¹ PD0	$\begin{array}{c} {\rm fr} = 10 \ {\rm M} \\ {\rm fr} = 10 \ {\rm M} \\ {\rm V}_{\rm CC} \geq 4.5 \\ 2.5 V \leq V_{\rm C} \\ {\rm V}_{\rm CC} \geq 4.5 \\ 2.5 V \leq V_{\rm C} \\ {\rm C}_{\rm L} = 100 \\ {\rm V}_{\rm CC} \geq 4.5 \\ 2.5 V \leq V_{\rm C} \\ {\rm V}_{\rm CC} \geq 4.5 \end{array}$	Hz Ext Clock Hz Ext Clock V = 4.5V V = 4.5V pF, RL = 2.2 k Ω V = 4.5V V = 4.5V			16 400 800 120 300		ns ns ns ns us µs µs
Rise Time Fall Time Inputs tSETUP tHOLD Output Propagation Delay tPD1, tPD0 SO, SK All Others	$fr = 10 \text{ M}$ $fr = 10 \text{ M}$ $V_{CC} \ge 4.5$ $2.5V \le V_{C}$ $V_{CC} \ge 4.5$ $2.5V \le V_{C}$ $C_{L} = 100$ $V_{CC} \ge 4.5$ $2.5V \le V_{C}$	Hz Ext Clock Hz Ext Clock V = 4.5V V = 4.5V pF, RL = 2.2 k Ω V = 4.5V V = 4.5V			16 400 800 120 300 1.4 3.5 2		ns ns ns ns us µs
Rise Time Fall Time Inputs tSETUP tHOLD Output Propagation Delay tPD1, tPD0 SO, SK All Others Minimum Pulse Width	$\begin{array}{c} {\rm fr} = 10 \ {\rm M} \\ {\rm fr} = 10 \ {\rm M} \\ {\rm V}_{\rm CC} \geq 4.5 \\ 2.5 V \leq V_{\rm C} \\ {\rm V}_{\rm CC} \geq 4.5 \\ 2.5 V \leq V_{\rm C} \\ {\rm C}_{\rm L} = 100 \\ {\rm V}_{\rm CC} \geq 4.5 \\ 2.5 V \leq V_{\rm C} \\ {\rm V}_{\rm CC} \geq 4.5 \end{array}$	Hz Ext Clock Hz Ext Clock V = 4.5V V = 4.5V pF, RL = 2.2 k Ω V = 4.5V V = 4.5V			16 400 800 120 300 1.4 3.5 2		ns ns ns ns us µs µs
Rise Time Fall Time Inputs tSETUP tHOLD Output Propagation Delay tPD1, tPD0 SO, SK All Others	$\begin{array}{c} {\rm fr} = 10 \ {\rm M} \\ {\rm fr} = 10 \ {\rm M} \\ {\rm V}_{\rm CC} \geq 4.5 \\ 2.5 V \leq V_{\rm C} \\ {\rm V}_{\rm CC} \geq 4.5 \\ 2.5 V \leq V_{\rm C} \\ {\rm C}_{\rm L} = 100 \\ {\rm V}_{\rm CC} \geq 4.5 \\ 2.5 V \leq V_{\rm C} \\ {\rm V}_{\rm CC} \geq 4.5 \end{array}$	Hz Ext Clock Hz Ext Clock V = 4.5V V = 4.5V pF, RL = 2.2 k Ω V = 4.5V V = 4.5V	ې ئ ئ		16 400 800 120 300 1.4 3.5 2		ns ns ns ns us µs

COP620C/COP621C/COP622C/COP640C/COP641C/COP642C **Absolute Maximum Ratings**

If Military/Aerospace specified devices are required. please contact the National Semiconductor Sales Offic

Office/Distributors for availability	and specifications.
Supply Voltage (V _{CC})	6V
Voltage at any Pin	-0.3V to V _{CC} + 0.3V
ESD Susceptibility (Note 4)	2000V

Total Current out of GND Pin (Sink) Storage Temperature Range

48 mA -65°C to +140°C

Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC Electrical Characteristics $-55^{\circ}C \le T_A \le +125^{\circ}C$ unless otherwise specified

40 mA

		T			8 a 10
Parameter	Condition	Min	Тур	Max	Units
Operating Voltage Power Supply Ripple (Note 1)	Peak to Peak	4.5		5.5 0.1 V _{CC}	v v
Supply Current High Speed Mode, CKI = 18 MHz Normal Mode, CKI = 4.5 MHz (Note 2)	$V_{CC} = 5.5V, tc = 1.1 \ \mu s$ $V_{CC} = 5.5V, tc = 2.2 \ \mu s$			15 5	mA mA
HALT Current (Note 3)	$V_{CC} = 5.5V, CKI = 0 MHz$	}	<10	30	μA
Input Levels RESET, CKI Logic High Logic Low All Other Inputs		0.9 V _{CC}		0.1 V _{CC}	v
Logic High Logic Low		0.7 V _{CC}		0.2 V _{CC}	v v
Hi-Z Input Leakage Input Pullup Current	$V_{CC} = 5.5V$ $V_{CC} = 4.5V$	-5 35		+5 300	μΑ μΑ
G Port Input Hysteresis			0.05 V _{CC}		V
Output Current Levels D Outputs Source Sink All Others Source (Weak Pull-Up)	$V_{CC} = 4.5V, V_{OH} = 3.8V$ $V_{CC} = 4.5V, V_{OL} = 1.0V$ $V_{CC} = 4.5V, V_{OH} = 3.2V$	0.35 9 9 0.35		120	mA mA μA
Source (Push-Pull Mode) Sink (Push-Pull Mode) TRI-STATE Leakage	$V_{CC} = 4.5V, V_{OH} = 3.8V$ $V_{CC} = 4.5V, V_{OL} = 0.4V$	1.4 -5.0		+5.0	mA mA μA
Allowable Sink/Source Current Per Pin D Outputs (Sink) All Others				12 2.5	mA mA
Maximum Input Current (Room Temp) Without Latchup (Note 5)	Room Temp			± 100	mA
RAM Retention Voltage, Vr	500 ns Rise and Fall Time (Min)	2.5			v
Input Capacitance				7	pF
Load Capacitance on D2				1000	pF

Note 1: Rate of voltage change must be less than 0.5V/ms.

Note 2: Supply current is measured after running 2000 cycles with a square wave CKI input, CKO open, inputs at rails and outputs open.

Note 3: The HALT mode will stop CKI from oscillating In the RC and the Crystal configurations. Test conditions: All inputs tied to V_{CC}, L and G ports TRI-STATE and tied to ground, all outputs low and tied to ground.

Note 4: Human body mode, 100 pF through 1500Ω.

Note 5: Except pins G6, G7, RESET

pins G6, RESET: +60 mA. - 100 mA pin G7: +100, -25 mA Sampled but not 100% tested.

Total Current into V_{CC} Pin (Source)

COP620C/COP621C/COP622C/COP640C/COP641C/COP642C

AC Electrical Characteristics - 55°C < TA < + 125°C unless otherwise specified

Parameter	Condition	Min	Тур	Max	Units
Instruction Cycle Time (tc) High Speed Mode (Div-by 20)	$V_{CC} \ge 4.5V$	1.1		DC	μs
Normal Mode (Div-by 10)	V _{CC} ≥ 4.5V	2.2		DC	μs
CKI Clock Duty Cycle (Note 6)	fr = Max (÷ 20 Mode)	33		66	%
Rise Time (Note 6) Fall Time (Note 6)	fr = 18 MHz Ext Clock fr = 18 MHz Ext Clock		}	12 8	ns ns
Inputs					
^t SETUP	$V_{CC} \ge 4.5V$	220	1		ns
	V _{CC} ≥ 4.5V	66			ns
Output Propagation Delay	$R_{L} = 2.2k, C_{L} = 100 p$	F	1		
tPD1, tPD0 SO, SK	V _{CC} ≥ 4.5V	1	1	0.8	μs
All Others	$V_{CC} \ge 4.5V$	}		1.1	μ5
MICROWIRE Setup Time (tuws		20			ns
MICROWIRE Hold Time (tuwh)		56		1	ns
MICROWIRE Output Valid				220	ns
Time (t _{UPD})			_		
Input Pulse Width	1				
Interrupt Input High Time		l to			
Interrupt Input Low Time Timer Input High Time	4	1C		1	
		1 tc			
LIMER INDUITLOW LIME					
Timer Input Low Time Reset Pulse Width					ш5
Reset Pulse Width	6 tested.	tc			μs
Reset Pulse Width lote 6: Parameter sampled but not 100%			+ 125°C unless	s otherwise spec	h
Reset Pulse Width lote 6: Parameter sampled but not 100%	6 tested. Cteristics in ROMless Mode Condition		+ 125°C unless Typ	s otherwise spec	h
Reset Pulse Width ote 8: Parameter sampled but not 100% AC Electrical Chara Parameter Instruction Cycle Time (tc) High Speed Mode	cteristics in ROMless Mode	$-55^{\circ}C < T_A < -55^{\circ}C < -55^{$		r	sified
Reset Pulse Width ote 6: Parameter sampled but not 100% AC Electrical Chara Parameter Instruction Cycle Time (tc)	Cteristics in ROMIess Mode	$-55^{\circ}C < T_A < -55^{\circ}C < -55^{$	Тур	Max	ified Units
Reset Pulse Width ote 6: Parameter sampled but not 100% AC Electrical Charac Parameter Instruction Cycle Time (tc) High Speed Mode (Div-by 20) Normal Mode (Div-by 10)	Cteristics in ROMless ModeCondition $V_{CC} \ge 4.5V$ $V_{CC} \ge 4.5V$	$-55^{\circ}C < T_A < -55^{\circ}C < -55^{$	Тур 2.2	Max DC	units μs
Reset Pulse Width ote 6: Parameter sampled but not 100% AC Electrical Chara Parameter Instruction Cycle Time (tc) High Speed Mode (Div-by 20) Normal Mode (Div-by 10) CKI Clock Duty Clock Rise Time	Cteristics in ROMIess Mode Condition $V_{CC} \ge 4.5V$	-55°C < T _A < -	Тур 2.2	Max DC DC	ified Units μs μs
Reset Pulse Width ote 6: Parameter sampled but not 100% AC Electrical Charac Parameter Instruction Cycle Time (tc) High Speed Mode (Div-by 20) Normal Mode (Div-by 10) CKI Clock Duty Clock	Cteristics in ROMless ModeCondition $V_{CC} \ge 4.5V$ $V_{CC} \ge 4.5V$ fr = Max (\div 20 Mode)	-55°C < T _A < -	Тур 2.2 4.4	Max DC DC	ified Units μs μs
Reset Pulse Width ote 6: Parameter sampled but not 100% AC Electrical Chara Parameter Instruction Cycle Time (tc) High Speed Mode (Div-by 20) Normal Mode (Div-by 10) CKI Clock Duty Clock Rise Time	Cteristics in ROMless ModeCondition $V_{CC} \ge 4.5V$ $V_{CC} \ge 4.5V$ fr = Max (\div 20 Mode)fr = 9 MHz Ext Clockfr = 9 MHz Ext Clockfr = 9 MHz Ext Clock	-55°C < T _A < -	Typ 2.2 4.4 24 16	Max DC DC	bified Units μs μs %
Reset Pulse Width ote 8: Parameter sampled but not 100% AC Electrical Charae Parameter Instruction Cycle Time (tc) High Speed Mode (Div-by 20) Normal Mode (Div-by 10) CKI Clock Duty Clock Rise Time Fall Time Inputs tSETUP	Cteristics in ROMless ModeCondition $V_{CC} \ge 4.5V$ $V_{CC} \ge 4.5V$ fr = Max (\div 20 Mode)fr = 9 MHz Ext Clockfr = 9 MHz Ext Clockfr = 9 MHz Ext Clock $V_{CC} \ge 4.5V$	-55°C < T _A < -	Typ 2.2 4.4 24 16 440	Max DC DC	ified Units μs μs s ns ns ns
Reset Pulse Width lote 6: Parameter sampled but not 100% AC Electrical Charac Parameter Instruction Cycle Time (tc) High Speed Mode (Div-by 20) Normal Mode (Div-by 10) CKI Clock Duty Clock Rise Time Fall Time Inputs	Cteristics in ROMless ModeCondition $V_{CC} \ge 4.5V$ $V_{CC} \ge 4.5V$ fr = Max (\div 20 Mode)fr = 9 MHz Ext Clockfr = 9 MHz Ext Clock $V_{CC} \ge 4.5V$ $V_{CC} \ge 4.5V$ $V_{CC} \ge 4.5V$	-55°C < T _A < -	Typ 2.2 4.4 24 16	Max DC DC	ified Units μs μs s ns ns
Reset Pulse Width lote & Parameter sampled but not 100% AC Electrical Charae Parameter Instruction Cycle Time (tc) High Speed Mode (Div-by 20) Normal Mode (Div-by 10) CKI Clock Duty Clock Rise Time Fall Time Inputs \set TUP \thoLD Output Propagation Delay	Cteristics in ROMless ModeCondition $V_{CC} \ge 4.5V$ $V_{CC} \ge 4.5V$ fr = Max (\div 20 Mode)fr = 9 MHz Ext Clockfr = 9 MHz Ext Clockfr = 9 MHz Ext Clock $V_{CC} \ge 4.5V$	-55°C < T _A < -	Typ 2.2 4.4 24 16 440	Max DC DC	ified Units μs μs s ns ns ns
Reset Pulse Width lote 6: Parameter sampled but not 100% AC Electrical Charae Parameter Instruction Cycle Time (tc) High Speed Mode (Div-by 20) Normal Mode (Div-by 10) CKI Clock Duty Clock Rise Time Fall Time Inputs \$ETUP \$HOLD	$\begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	-55°C < T _A < -	Typ 2.2 4.4 24 16 440	Max DC DC	ified Units μs μs s ns ns ns ns
Reset Pulse Width lote 6: Parameter sampled but not 100% AC Electrical Charac Parameter Instruction Cycle Time (tc) High Speed Mode (Div-by 20) Normal Mode (Div-by 10) CKI Clock Duty Clock Rise Time Fall Time Inputs tSETUP tHOLD Output Propagation Delay tPD1, tPD0	Cteristics in ROMless ModeCondition $V_{CC} \ge 4.5V$ $V_{CC} \ge 4.5V$ fr = Max (\div 20 Mode)fr = 9 MHz Ext Clockfr = 9 MHz Ext Clock $V_{CC} \ge 4.5V$ $V_{CC} \ge 4.5V$ $V_{CC} \ge 4.5V$	-55°C < T _A < -	Typ 2.2 4.4 24 16 440 132	Max DC DC	ified Units μs μs s ns ns ns
Reset Pulse Width lote 6: Parameter sampled but not 100% AC Electrical Charac Parameter Instruction Cycle Time (tc) High Speed Mode (Div-by 20) Normal Mode (Div-by 10) CKI Clock Duty Clock Rise Time Fall Time Inputs tSETUP tHOLD Output Propagation Delay tpD1, tpD0 SO, SK	Cteristics in ROMless ModeCondition $V_{CC} \ge 4.5V$ $V_{CC} \ge 4.5V$ fr = Max (\div 20 Mode)fr = 9 MHz Ext Clockfr = 9 MHz Ext Clockfr = 9 MHz Ext ClockV_{CC} \ge 4.5V $V_{CC} \ge 4.5V$ RL = 2.2k, CL = 100 pF $V_{CC} \ge 4.5V$	-55°C < T _A < -	Typ 2.2 4.4 24 16 440 132 1.55	Max DC DC	ified Units μs μs ns ns ns ns μs
Reset Pulse Width lote 6: Parameter sampled but not 100% AC Electrical Charac Parameter Instruction Cycle Time (tc) High Speed Mode (Div-by 20) Normal Mode (Div-by 10) CKI Clock Duty Clock Rise Time Fall Time Inputs tSETUP tHOLD Output Propagation Delay tPD1, tPD0 SO, SK All Others	Cteristics in ROMless ModeCondition $V_{CC} \ge 4.5V$ $V_{CC} \ge 4.5V$ fr = Max (\div 20 Mode)fr = 9 MHz Ext Clockfr = 9 MHz Ext Clockfr = 9 MHz Ext ClockV_{CC} \ge 4.5V $V_{CC} \ge 4.5V$ RL = 2.2k, CL = 100 pF $V_{CC} \ge 4.5V$	-55°C < T _A < -	Typ 2.2 4.4 24 16 440 132 1.55	Max DC DC	ified Units μs μs ns ns ns ns μs
Reset Pulse Width lote 6: Parameter sampled but not 100% AC Electrical Charac Parameter Instruction Cycle Time (tc) High Speed Mode (Div-by 20) Normal Mode (Div-by 10) CKI Clock Duty Clock Rise Time Fall Time Inputs tSETUP tHOLD Output Propagation Delay tp01, tpD0 SO, SK All Others Minimum Pulse Width	Cteristics in ROMless ModeCondition $V_{CC} \ge 4.5V$ $V_{CC} \ge 4.5V$ fr = Max (\div 20 Mode)fr = 9 MHz Ext Clockfr = 9 MHz Ext Clockfr = 9 MHz Ext ClockV_{CC} \ge 4.5V $V_{CC} \ge 4.5V$ RL = 2.2k, CL = 100 pF $V_{CC} \ge 4.5V$	55°C < T _A < - Min 40	Typ 2.2 4.4 24 16 440 132 1.55	Max DC DC	ified Units μs μs ns ns ns ns μs

Connection Diagrams

DUAL-IN-LINE PACKAGE

Pin Descriptions

 $V_{\mbox{CC}}$ and GND are the power supply pins.

CKI is the clock input. This can come from an external source, a R/C generated oscillator or a crystal (in conjunction with CKO). See Oscillator description.

RESET is the master reset input. See Reset description.

PORT I is a four bit Hi-Z input port.

PORT L is an 8-bit I/O port.

There are two registers associated with each L I/O port: a data register and a configuration register. Therefore, each L I/O bit can be individually configured under software control as shown below:

Port L Config.	Port L Data	Port L Setup
0	0	Hi-Z Input (TRI-STATE)
0	1	Input With Weak Pull-Up
1	0	Push-Pull "0" Output
1	1	Push-Pull "1" Output

Three data memory address locations are allocated for these ports, one for data register, one for configuration register and one for the input pins.

PORT G is an 8-bit port with 6 I/O pins (G0–G5) and 2 input pins (G6, G7). All eight G-pins have Schmitt Triggers on the inputs. The G7 pin functions as an input pin under normal operation and as the continue pin to exit the HALT mode. There are two registers with each I/O port: a data register and a configuration register. Therefore, each I/O bit can be individually configured under software control as shown below.

Port G Config.	Port G Data	Port G Setup
0	0	Hi-Z Input (TRI-STATE)
0	1	Input With Weak Pull-Up
1	0	Push-Pull "0" Output
1	1	Push-Pull "1" Output

Three data memory address locations are allocated for these ports, one for data register, one for configuration register and one for the input pins. Since G6 and G7 are input only pins, any attempt by the user to set them up as outputs by writing a one to the configuration register will be disregarded. Reading the G6 and G7 configuration bits will return zeros. Note that the chip will be placed in the HALT mode by setting the G7 data bit.

Six bits of Port G have alternate features:

G0 INTR (an external interrupt)

G3 TIO (timer/counter input/output)

G4 SO (MICROWIRE serial data output)

G5 SK (MICROWIRE clock I/O)

G6 SI (MICROWIRE serial data input)

G7 CKO crystal oscillator output (selected by mask option) or HALT restart input (general purpose input)

Pins G1 and G2 currently do not have any alternate functions.

PORT D is a four bit output port that is set high when RESET goes low.

The D2 pin is sampled at reset. If it is held low at reset the COP820C/COP840C enters the ROMless mode of operation.

Functional Description

Figure 1 shows the block diagram of the internal architecture. Data paths are illustrated in simplified form to depict how the various logic elements communicate with each other in implementing the instruction set of the device.

ALU AND CPU REGISTERS

The ALU can do an 8-bit addition, subtraction, logical or shift operation in one cycle time.

There are five CPU registers:

A is the 15-bit Program Counter register

PU is the upper 7 bits of the program counter (PC)

PL is the lower 8 bits of the program counter (PC)

B is the 8-bit address register, can be auto incremented or decremented.

X is the 8-bit alternate address register, can be incremented or decremented.

SP is the 8-bit stack pointer, points to subroutine stack (in RAM).

B, X and SP registers are mapped into the on chip RAM. The B and X registers are used to address the on chip RAM. The SP register is used to address the stack in RAM during subroutine calls and returns.

PROGRAM MEMORY

Program memory for the COP820C consists of 1024 bytes of ROM (2048 bytes of ROM for the COP840C). These bytes may hold program instructions or constant data. The program memory is addressed by the 15-bit program counter (PC). ROM can be indirectly read by the LAID instruction for table lookup.

DATA MEMORY

The data memory address space includes on chip RAM, I/O and registers. Data memory is addressed directly by the instruction or indirectly by the B, X and SP registers.

The COP820C has 64 bytes of RAM and the COP840C has 128 bytes of RAM. Sixteen bytes of RAM are mapped as "registers" that can be loaded immediately, decremented or tested. Three specific registers: B, X and SP are mapped into this space, the other bytes are available for general usage.

The instruction set permits any bit in memory to be set, reset or tested. All I/O and registers (except the A & PC) are memory mapped; therefore, I/O bits and register bits can be directly and individually set, reset and tested.

RESET

The RESET input when pulled low initializes the microcontroller. Initialization will occur whenever the RESET input is pulled low. Upon initialization, the ports L and G are placed in the TRI-STATE mode and the Port D is set high. The PC, PSW and CNTRL registers are cleared. The data and configuration registers for Ports L & G are cleared.

The external RC network shown in Figure 4 should be used to ensure that the RESET pin is held low until the power supply to the chip stabilizes.

Functional Description (Continued)

TL/DD/9103-9

RC ≥ 5X Power Supply Rise Time **FIGURE 4. Recommended Reset Circuit**

OSCILLATOR CIRCUITS

Figure 5 shows the three clock oscillator configurations available for the COP820C and COP840C.

A. CRYSTAL OSCILLATOR

The COP820C/COP840C can be driven by a crystal clock. The crystal network is connected between the pins CKI and CKO.

Table I shows the component values required for various standard crystal values.

B. EXTERNAL OSCILLATOR

CKI can be driven by an external clock signal. CKO is available as a general purpose input and/or HALT restart control.

C. R/C OSCILLATOR

CKI is configured as a single pin RC controlled Schmitt trigger oscillator. CKO is available as a general purpose Input and/or HALT restart control.

Table II shows the variation in the oscillator frequencies as functions of the component (R and C) values.

TL/DD/9103-10

FIGURE 5. Crystal and R-C Connection Diagrams

OSCILLATOR MASK OPTIONS

The COP820C and COP840C can be driven by clock inputs between DC and 20 MHz. For low input clock frequencies (< 5 MHz) the instruction cycle frequency can be selected to be the input clock frequency divided by 10. This mode is known as the Normal Mode.

For oscillator frequencies that are greater than 5 MHz the chip must run with a divide by 20. This is known as the High Speed mode.

R1 (kΩ)	R2 (MΩ)	C1 (pF)	C2 (pF)	CKI Freq (MHz)	Conditions
0	1	30	30-36	20	$V_{CC} = 5V$
0	1	30	30-36	10	$V_{CC} = 5V$
0	1	30	30-36	4 (÷ 20)	$V_{CC} = 2.5V$
0	1 1	200	100-150	0.455	V _{CC} = 2.5V

TABLE L Crystal Oscillator Configuration T

TABLE II. RC Oscillator Configuration, $T_A = 25^{\circ}C$

R (kΩ)	C (pF)	CKI Freq. (MHz)	instr. Cycle (µs)	Conditions
3.3	82	2.8 to 2.2	3.6 to 4.5	$V_{\rm CC} = 5V$
5.6	100	1.5 to 1.1	6.7 to 9	$V_{CC} = 5V$
6.8	100	1.1 to 0.8	9 to 12.5	$V_{\rm CC} = 2.5V$

The COP820C and COP840C microcontrollers have five mask options for configuring the clock input. The CKI and CKO pins are automatically configured upon selecting a particular option.

- High Speed Crystal (CKI/20) CKO for crystal configuration
- Normal Mode Crystal (CKI/10) CKO for crystal configuration
- High Speed External (CKI/20) CKO available as G7 input
- Normal Mode External (CKI/10) CKO available as G7 input
- R/C (CKI/10) CKO available as G7 input

G7 can be used either as a general purpose input or as a control input to continue from the HALT mode.

CURRENT DRAIN

The total current drain of the chip depends on:

1) Oscillator operating mode-I1

2) Internal switching current-I2

- 3) Internal leakage current-13
- 4) Output source current-14
- 5) DC current caused by external input not at V_{CC} or GND--- I5

Thus the total current drain, It is given as

$$|t = |1 + |2 + |3 + |4 + |5|$$

To reduce the total current drain, each of the above components must be minimum.

The chip will draw the least current when in the normal mode. The high speed mode will draw additional current. The R/C mode will draw the most. Operating with a crystal network will draw more current than an external square-wave. Switching current, governed by the equation below, can be reduced by lowering voltage and frequency. Leak-age current can be reduced by lowering voltage and temperature. The other two items can be reduced by carefully designing the end-user's system.

 $I2 = C \times V \times f$

Where

C = equivalent capacitance of the chip.

V = operating voltage

f = CKI frequency

Some sample current drain values at $V_{CC} = 6V$ are:

CKI (MHz)	Inst. Cycle (µs)	It (mA)
20	1	9
3.58	3	2.2
2	5	1.2
0.3	33	0.2
0 (HALT)	—	<0.0001

HALT MODE

The COP820C and COP840C support a power saving mode of operation: HALT. The controller is placed in the HALT mode by setting the G7 data bit, alternatively the user can stop the clock input. In the HALT mode all internal processor activities including the clock oscillator are stopped. The fully static architecture freezes the state of the controller and retains all information until continuing. In the HALT mode, power requirements are minimal as it draws only leakage currents and output current. The applied voltage (V_{CC}) may be decreased down to Vr (minimum RAM retention voltage) without altering the state of the machine.

There are two ways to exit the HALT mode: via the RESET or by the CKO pin. A low on the RESET line reinitializes the microcontroller and starts executing from the address 0000H. A low to high transition on the CKO pin causes the microcontroller to continue with no reinitialization from the address following the HALT instruction. This also resets the G7 data bit.

INTERRUPTS

The COP820C and COP840C have a sophisticated interrupt structure to allow easy interface to the real word. There are three possible interrupt sources, as shown below.

A maskable interrupt on external G0 input (positive or negative edge sensitive under software control)

A maskable interrupt on timer carry or timer capture

A non-maskable software/error interrupt on opcode zero

INTERRUPT CONTROL

The GIE (global interrupt enable) bit enables the interrupt function. This is used in conjunction with ENI and ENTi to select one or both of the interrupt sources. This bit is reset when interrupt is acknowledged.

ENI and ENTI bits select external and timer interrupt respectively. Thus the user can select either or both sources to interrupt the microcontroller when GIE is enabled.

IEDG selects the external interrupt edge (0 = rising edge, 1 = falling edge). The user can get an interrupt on both rising and falling edges by toggling the state of IEDG bit after each interrupt.

IPND and TPND bits signal which interrupt is pending. After interrupt is acknowledged, the user can check these two bits to determine which interrupt is pending. This permits the interrupts to be prioritized under software. The pending flags have to be cleared by the user. Setting the GIE bit high inside the interrupt subroutine allows nested interrupts.

The software interrupt does not reset the GIE bit. This means that the controller can be interrupted by other interrupt sources while servicing the software interrupt.

INTERRUPT PROCESSING

The interrupt, once acknowledged, pushes the program counter (PC) onto the stack and the stack pointer (SP) is decremented twice. The Global Interrupt Enable (GIE) bit is reset to disable further interrupts. The microcontroller then vectors to the address 00FFH and resumes execution from that address. This process takes 7 cycles to complete. At the end of the interrupt subroutine, any of the following three instructions return the processor back to the main program: RET, RETSK or RETI. Either one of the three instructions will pop the stack into the program counter (PC). The stack pointer is then incremented twice. The RETI instruction additionally sets the GIE bit to re-enable further Interrupts.

Any of the three instructions can be used to return from a hardware interrupt subroutine. The RETSK instruction should be used when returning from a software interrupt subroutine to avoid entering an infinite loop.

DETECTION OF ILLEGAL CONDITIONS

The COP820C and COP840C incorporate a hardware mechanism that allows it to detect illegal conditions which may occur from coding errors, noise and 'brown out' voltage drop situations. Specifically it detects cases of executing out of undefined ROM area and unbalanced stack situations.

Reading an undefined ROM location returns 00 (hexadecimal) as its contents. The opcode for a software interrupt is also '00'. Thus a program accessing undefined ROM will cause a software interrupt.

Reading an undefined RAM location returns an FF (hexadecimal). The subroutine stack on the COP820C and COP840C grows down for each subroutine call. By initializing the stack pointer to the top of RAM, the first unbalanced return instruction will cause the stack pointer to address undefined RAM. As a result the program will attempt to execute from FFFF (hexadecimal), which is an undefined ROM location and will trigger a software interrupt.

MICROWIRE/PLUSTM

MICROWIRE/PLUS is a serial synchronous bidirectional communications interface. The MICROWIRE/PLUS capability enables the COP820C and COP840C to interface with any of National Semiconductor's MICROWIRE peripherals (i.e. A/D converters, display drivers, EEPROMS, etc.) and with other microcontrollers which support the MICROWIRE/ PLUS interface. It consists of an 8-bit serial shift register (SIO) with serial data input (SI), serial data output (SO) and serial shift clock (SK). *Figure 7* shows the block diagram of the MICROWIRE/PLUS interface.

The shift clock can be selected from either an internal source or an external source. Operating the MICROWIRE/ PLUS interface with the internal clock source is called the Master mode of operation. Similarly, operating the MICRO-WIRE/PLUS interface with an external shift clock is called the Slave mode of operation.

The CNTRL register is used to configure and control the MICROWIRE/PLUS mode. To use the MICROWIRE/PLUS, the MSEL bit in the CNTRL register is set to one. The SK clock rate is selected by the two bits, S0 and S1, in the CNTRL register. Table III details the different clock rates that may be selected.

TABLE III				
S1	SO	SK Cycle Time		
0	0	2t _C		
0	1 1	2tc 4tc 8tc		
1	x	8t _C		

where,

t_C is the instruction cycle clock.

MICROWIRE/PLUS OPERATION

Setting the BUSY bit in the PSW register causes the MI-CROWIRE/PLUS arrangement to start shifting the data. It gets reset when eight data bits have been shifted. The user may reset the BUSY bit by software to allow less than 8 bits to shift. The COP820C and COP840C may enter the MI-CROWIRE/PLUS mode either as a Master or as a Slave. *Figure 8* shows how two COP820C microcontrollers and several peripherals may be interconnected using the MI-CROWIRE/PLUS arrangement.

Master MICROWIRE/PLUS Operation

In the MICROWIRE/PLUS Master mode of operation the shift clock (SK) is generated internally by the COP820C. The MICROWIRE/PLUS Master always initiates all data exchanges. (See *Figure 8*). The MSEL bit in the CNTRL register must be set to enable the SO and SK functions onto the G Port. The SO and SK pins must also be selected as outputs by setting appropriate bits in the Port G configuration register. Table IV summarizes the bit settings required for Master mode of operation.

SLAVE MICROWIRE/PLUS OPERATION

In the MICROWIRE/PLUS Slave mode of operation the SK clock is generated by an external source. Setting the MSEL bit in the CNTRL register enables the SO and SK functions onto the G Port. The SK pin must be selected as an input and the SO pin is selected as an output pin by appropriately setting up the Port G configuration register. Table IV summarizes the settings required to enter the Slave mode of operation.

The user must set the BUSY flag immediately upon entering the Slave mode. This will ensure that all data bits sent by the Master will be shifted properly. After eight clock pulses the BUSY flag will be cleared and the sequence may be repeated. (See *Figure 8.*)

Functional Description (Continued)

TABLE IV

G4 Config. Bit	G5 Config. Bit	G4 Fun.	G5 Fun.	G6 Fun.	Operation
1	1	SO	Int. SK	SI	MICROWIRE Master
0	1	TRI-STATE	Int. SK	Si	MICROWIRE Master
1	0	so	Ext. SK	SI	MICROWIRE Slave
0	0	TRI-STATE	Ext. SK	SI	MICROWIRE Slave

TIMER/COUNTER

The COP820C and COP840C have a powerful 16-bit timer with an associated 16-bit register enabling them to perform extensive timer functions. The timer T1 and its register R1 are each organized as two 8-bit read/write registers. Control bits in the register CNTRL allow the timer to be started and stopped under software control. The timer-register pair can be operated in one of three possible modes. Table V details various timer operating modes and their requisite control settings.

FIGURE 7. MICROWIRE/PLUS Block Diagram

MODE 1. TIMER WITH AUTO-LOAD REGISTER

In this mode of operation, the timer T1 counts down at the instruction cycle rate. Upon underflow the value in the register R1 gets automatically reloaded into the timer which continues to count down. The timer underflow can be programmed to interrupt the microcontroller. A bit in the control register CNTRL enables the TIO (G3) pin to toggle upon timer underflows. This allow the generation of square-wave outputs or pulse width modulated outputs under software control. (See *Figure 9*)

MODE 2. EXTERNAL COUNTER

In this mode, the timer T1 becomes a 16-bit external event counter. The counter counts down upon an edge on the TIO pin. Control bits in the register CNTRL program the counter to decrement either on a positive edge or on a negative edge. Upon underflow the contents of the register R1 are automatically copied into the counter. The underflow can also be programmed to generate an interrupt. (See Figure 9)

MODE 3. TIMER WITH CAPTURE REGISTER

Timer T1 can be used to precisely measure external frequencies or events in this mode of operation. The timer T1 counts down at the instruction cycle rate. Upon the occurrence of a specified edge on the TIO pin the contents of the timer T1 are copied into the register R1. Bits in the control register CNTRL allow the trigger edge to be specified either as a positive edge or as a negative edge. In this mode the user can elect to be interrupted on the specified trigger edge. (See *Figure 10*.)

Functional Description (Continued)

TABLE V. Timer Operating Modes

CNTRL Bits 765	Operation Mode	T interrupt	Timer Counts On
000	External Counter W/Auto-Load Reg.	Timer Carry	TIO Pos. Edge
001	External Counter W/Auto-Load Reg.	Timer Carry	TIO Neg. Edge
010	Not Allowed	Not Allowed	Not Allowed
011	Not Allowed	Not Allowed	Not Allowed
100	Timer W/Auto-Load Reg.	Timer Carry	tc
101	Timer W/Auto-Load Reg./Toggle TIO Out	Timer Carry	tc
110	Timer W/Capture Register	TIO Pos. Edge	tc
111	Timer W/Capture Register	TIO Neg. Edge	tc

TIMER PWM APPLICATION

Figure 11 shows how a minimal component D/A converter can be built out of the Timer-Register pair in the Auto-Reload mode. The timer is placed in the "Timer with auto reload" mode and the TIO pin is selected as the timer output. At the outset the TIO pin is set high, the timer T1 holds the on time and the register R1 holds the signal off time. Setting TRUN bit starts the timer which counts down at the instruction cycle rate. The underflow toggles the TIO output and copies the off time into the timer, which continues to run. By alternately loading in the on time and the off time at each successive interrupt a PWM frequency can be easily generated.

FIGURE 11. Timer Application

Control Registers									
CNTRL	CNTRL REGISTER (ADDRESS X'00EE)								
The Timer and MICROWIRE/PLUS control register contains the following bits:									
S1 & S0) S	elect the	MICRO	WIRE/P	LUS cloc	k divic	le-by		
IEDG	E	xternal in	terrupt e	dge pol	arity sele	ct			
	(0) = rising	, edge, 1	= falli	ng edge)				
MSEL	MSEL Enable MICROWIRE/PLUS functions SO and SK								
TRUN		tart/Stop :op)	the Tir	ner/Cou	inter (1	= rui	n,0 =		
TC3		mer inpu = falling		olarity s	elect (0 =	= risin	g edge,		
TC2	S	elects the	e capture	e mode					
TC1	S	elects the	e timer n	node					
TC1	тс	2 TC3	TRUN	MSEL	IEDG	S1	S0		
BIT 7							BIT 0		
PSW R	EGIS	STER (AC	DRESS	X'00EF)				
The PS	W re	egister co	intains tl	ne foliov	ving sele	ct bits:	:		
GIE	Glo	bal interr	upt enat	ele					
ENI	Exte	ərnal inte	rrupt en	able					
BUSY	MIC	ROWIRE	PLUS	busy shi	ifting				
IPND	ND External interrupt pending								
ENTI	Timer interrupt enable								
TPND	Timer interrupt pending								
С	C Carry Flag								
HC	Hal	f carry Fl	ag			_			
нс	С	TPND	ENTI	IPND	BUSY	ENI	GIE		
Bit 7							Bit 0		

Operating Modes

These controllers have two operating modes: Single Chip mode and the ROMless mode. The operating mode is determined by the state of the D2 pin at power on reset.

SINGLE CHIP MODE

In the Single Chip mode, the controller functions as a self contained microcontroller. It can address internal RAM and ROM. All ports configured as memory mapped I/O ports.

ROMLESS MODE

The COP820C and COP840C enter the ROMless mode of operation if the D2 pin is held at logical "0" at reset. In this case the internal ROM is disabled and the controller can now address up to 32 kbytes of external program memory. In the ROMIess mode of operation, the COP820C uses the 64 bytes of onboard RAM and the COP840C uses the 128 bytes of onboard RAM. The ports D and I are used to access the external program memory. By providing a serial interface to external program memory, a large address space can be managed without the penalty of losing a large number of I/O pins in the process. Figure 12 shows in schematic form the logic required for the ROMless mode operation and all support logic required to recreate the I/O.

Memory Map

All RAM, ports and registers (except A and PC) are mapped into data memory address space.

Address Contents COP820C 00 to 2F On Chip RAM Bytes 30 to 7F Unused RAM Address Space (Reads as all Ones) COP840C 00 to 6F On Chip RAM Bytes 70 to 7F Unused RAM Address Space (Reads as all Ones) COP820C and COP840C 80 to BF Expansion Space for on Chip EERAM C0 to CF Expansion Space for I/O and Registers D0 to DF On Chip I/O and Registers D0 Port L Data Register D1 Port L Configuration Register D2 Port L Input Pins (Read Only) D3 Reserved for Port L D4 Port G Data Register D5 Port G Configuration Register D6 Port G Input Pins (Read Only) D7 Port I Input Pins (Read Only) D8-DB Reserved for Port C DC Port D Data Register DD-DF Reserved for Port D E0 to EF On Chip Functions and Registers EÓ-E7 Reserved for Future Parts E8 Reserved E9 MICROWIRE/PLUS Shift Register EA Timer Lower Byte EB Timer Upper Byte EC Timer Autoload Register Lower Byte ED Timer Autoload Register Upper Byte EE CNTRL Control Register FF **PSW Register** F0 to FF On Chip RAM Mapped as Registers FC X Register FD SP Register FE **B** Register

Reading unused memory locations below 7FH will return all ones. Reading other unused memory locations will return undefined data.

Addressing Modes

REGISTER INDIRECT

This is the "normal" mode of addressing for COP820C and COP840C. The operand is the memory addressed by the B register or X register.

DIRECT

The instruction contains an 8-bit address field that directly points to the data memory for the operand.

IMMEDIATE

The instruction contains an 8-bit immediate field as the operand.

REGISTER INDIRECT (AUTO INCREMENT AND DECREMENT)

This is a register indirect mode that automatically increments or decrements the B or X register after executing the instruction.

COP620C/COP621C/COP622C/COP640C/COP641C/COP642C/COP820C/COP821C/COP822C/COP840C/COP841C/COP842C

Addressing Modes (Continued)

RELATIVE

This mode is used for the JP instruction, the instruction field is added to the program counter to get the new program location. JP has a range of from -31 to +32 to allow a one byte relative jump (JP + 1 is implemented by a NOP instruction). There are no 'pages' when using JP, all 15 bits of PC are used.

Instruction Set

REGISTER AND SYMBOL DEFINITIONS

Registers

- A 8-bit Accumulator register
- B 8-bit Address register
- X 8-bit Address register
- SP 8-bit Stack pointer register

- PC 15-bit Program counter register
- PU upper 7 bits of PC
- PL lower 8 bits of PC
- C 1-bit of PSW register for carry
- HC Half Carry
- GIE 1-bit of PSW register for global interrupt enable

Symbols

- [B] Memory indirectly addressed by B register
- [X] Memory indirectly addressed by X register
- Mem Direct address memory or [B]
- MemI Direct address memory or [B] or Immediate data
- Imm 8-bit Immediate data
- Reg Register memory: addresses F0 to FF (Includes B, X and SP)
- Bit Bit number (0 to 7)
- Loaded with
- Exchanged with

Instruction Set

ADD	add	A 🔶 A + Memi
ADC	add with carry	A ← A + Meml + C, C ← Carry
		HC 🔶 Half Carry
SUBC	subtract with carry	A ← A + Memi +C, C ← Carry
		HC ← Half Carry
AND	Logical AND	A - A and Memi
OR	Logical OR	A ← A or Memi
XOR	Logical Exclusive-OR	A 🔶 A xor Memi
IFEQ	IF equal	Compare A and Memi, Do next if A = Memi
IFGT	IF greater than	Compare A and Memi, Do next if A > Memi
IFBNE	IF B not equal	Do next if lower 4 bits of $B \neq Imm$
DRSZ	Decrement Reg. ,skip if zero	Reg - Reg - 1, skip if Reg goes to 0
SBIT	Set bit	
SDIT	Serbit	1 to bit,
	Be with	Mem (bit = 0 to 7 Immediate)
RBIT	Reset bit	0 to bit,
		Mem
IFBIT	lf bit	If bit,
		Mem is true, do next instr.
X	Exchange A with memory	A ↔ Mem
LDA	Load A with memory	A - Memi
LD mem	Load Direct memory Immed.	Mem ← Imm
LD Reg	Load Register memory Immed.	Reg ← Imm
x	Exchange A with memory [B]	$A \longleftrightarrow [B] (B \leftarrow B \pm 1)$
x	Exchange A with memory [X]	$A \longleftrightarrow [X] (X \leftarrow X \pm 1)$
LD A	Load A with memory [B]	A ← [B] (B ← B±1)
LD A	Load A with memory [X]	$A \leftarrow [X] (X \leftarrow X \pm 1)$
LD M	Load Memory Immediate	[B] ← Imm (B ← B±1)
CLRA	Clear A	$A \leftarrow 0$
INCA	Increment A	$A \leftarrow A + 1$
DECA	Decrement A	$A \leftarrow A - 1$
LAID	Load A indirect from ROM	
DCORA	DECIMAL CORRECT A	A ← BCD correction (follows ADC, SUBC)
RRCA	ROTATE A RIGHT THRU C	$C \rightarrow A7 \rightarrow \dots \rightarrow A0 \rightarrow C$
SWAPA	Swap nibbles of A	$\begin{array}{c} 0 \rightarrow A & \rightarrow \dots \rightarrow A & \rightarrow 0 \\ A & - \dots & - A & + A \\ A & - \dots & A & + A \\ A & - \dots & A & + A \end{array}$
SC	Set C	$C \leftarrow 1, HC \leftarrow 1$
RC	Reset C	$C \leftarrow 0, HC \leftarrow 0$
IFC	IfC	If C is true, do next instruction
	If not C	If C is not true, do next instruction
JMPL	Jump absolute long	PC ← ii (ii = 15 bits, 0 to 32k)
JMP	Jump absolute	PC110 ← i (i = 12 bits)
JP	Jump relative short	$PC \leftarrow PC + r (r is -31 to +32, not 1)$
JSRL	Jump subroutine long	[SP] ← PL,[SP-1] ← PU,SP-2,PC ← ii
JSR	Jump subroutine	[SP] ← PL,[SP-1] ← PU,SP-2,PC11 0 ← i
JID	Jump indirect	$PL \leftarrow ROM(PU,A)$
RET	Return from subroutine	SP+2,PL ← [SP],PU ← [SP-1]
RETSK	Return and Skip	$SP+2,PL \leftarrow [SP],PU \leftarrow [SP-1],Skip next instruction$
RETI		$SP+2,PL \leftarrow [SP],PU \leftarrow [SP-1],Skip next instructionSP+2,PL \leftarrow [SP],PU \leftarrow [SP-1],GIE \leftarrow 1$
	Return from Interrupt	
INTR	Generate an interrupt	$(SP] \leftarrow PL, (SP-1) \leftarrow PU, SP-2, PC \leftarrow OFF$
NOP	No operation	PC ← PC + 1

COP620C/COP621C/COP622C/COP640C/COP641C/COP642C/COP820C/COP821C/COP822C/COP840C/COP841C/COP842C

					(əldat (gniwollot ees)	apoodo pasn	un ue si .	noi	memory locat	nddressed	s a directly s	ibM Bl	sb etsibernmi ertt	si i	мреге,
E	ər + qL	ԴԵ + 35	0F00-0FFF	0E00-0EEE 12B	IFBNE 0F	רם פ' ס	тівя (8),7	TI82 (8),7	ІТЭЯ	*	*	*	DRSZ 0FF	LD 0FF,#1	ər- 9L	0- 러C
Э	3r + qL	16 + 31	0E00-0EFF JMP	0E00-0EFF JSR	IFBNE OE	רס פי ז	тівя (8) ,ð	7182 (8) ,8	RET	(8]' #! רם	(8) רם א'	[X] רם∀'	340 ZSAQ	LD 0FE,#i	7P-17	1⊢ dſ
a	≯ լ+ վՐ	ԴЬ + 30	0D00-0DEE 1Wb	0D00-0DEE 12B	IFBNE 0D	LD B, 2	тівя (8),2	T182 [8],2	ветск	РМ '∀ ם	ายรก	סוצ	070 SPRO	ГD 0 LD' #!	81- 9L	JP -2
ე	51 + 9L	Jh + 29	0C00-0CEE ЛWБ	0C00-0CEE 12B	IFBNE 0C	E'801	TI8A (8),4	TI82 [8],4	*	ЬМ, А Х	ламг	!# רם איץ	DHSZ OFC	LD 0FC,#i	61- JL	£- 4ſ
8	JP + 12	Jb + 28	0800-08EE JMP	0800-08EE 728	IFBNE 08	רס פ' ז	ТІӨЯ (8),6	1182 [8],5	DECA	(8–]'#! רם	[−8] רס∀'	[−X] רם∀'	840 ZSRQ	۲D 0EB,#i	JP -20	16-4
۷	11 + 4L	75 + 9L	9ML 940-00A0	A2L 940-00A0	A0 3N83I	רם פ' פ	тівя (8),s	7182 2,[8]	INCA	(+8)*#! רם	[+8] רם∀'	[+X] רם∀'	A70 S2AD	i#'A∃0 ⊡	12- 9L	Jb -6
6	01 + 9L	Jb + 26	0900-09FF JMP	9900-09FF JSL	6 3N8JI	רם פ' פ	ТІ8Я (8),1	ті82 [8],†	IFNC	*	*	*	640 ZSAQ	!#'6∃0 OL	16 -22	9- df
8	16 + 9L	16 + 25	0800-08FF JMP	0800-08FF JSR	IFBNE 8	רם פי ג	тівя (8),0	TI82 [8],0	IFC	!# רם∀'	*	dON	870 Z2RQ	ГD 0 L 8'#!	٦ Ь -53	7- 9L
2	8 + 9L	16 + 54	9700-07FF	9200-07FF	7 3N8-1	רם פ' פ	*	TI871 (8),7	ЯО [8],A	,А ЯО i¥	*	*	770 SSAO	רם 0בַ2'#!	ԴԵ <i>-</i> 5¢	8- 9L
9	չ + ՉՆ	ԴԵ + ՏՅ	0600-06FF JMP	900-0090 12B	IFBNE 6	רם פ' 6	АЯОЭД	11811 6,[8]	ЯОХ [8],А	,A ROX i *	(8) (8)	,A X [X]	940 ZSAQ	רם 0 ו פ'#!	ԴԵ -ՏՉ	- ግ
9	9 + ժՐ	ԴԵ + ՏՏ	0200-02FF JMP	0200-02FF JSR	IEBNE 2	40,80A	A9AW2	11811 5,[8]	qna (8),a	,A QNA i *	air	*	STO ZSAD	רם 0et'#	JP -26	01-9L
7	16 + 6	12 + 9L	0400-04EE 1Wb	0400-04FF JSR	IFBNE 4	10 °B 01	48JO	16811 4,[8]	00A [8],A	,A DDA i¥	ראום	*	⊅=10 ZSBO	רם 0 ⊢ ל'#!	72- 9L	የተ- ዓር
ε	16 + 4	ԴԻ + 20	0300-03EE 1Wb	0300-03EE 128	IFBNE 3	LD 8, 0C	*	11871 3,(8)	тдл (8),А	IFGT A, i*	(-8) (-8)	[−X] '∀X	EH0 ZSHO	ГD 0E3'#!	ԴԵ -28	JP-12
2	16 + 3	91 + 4L	0500-02FF JMP	1320-02FF 1320-02FF	IFBNE 2	רם פ' סם	*	11871 2,[8]	ifeq A,[B]	IFEQ A, #i	(+8) (+8)	[+X] '∀X	270 Z2AO	LD 0F2, #i	Jb -29	15-13
L	JP + 2	81 + 9L	0100-01FF	ASL 9100-0010	IFBNE 1	LD B, OE	*	TI8न। (8),1	A,[B] SUBC	¥! S∩BC∀'	cs	*	DBSZ 0F1	۲D 0E1'#!	ль - 30	1P-14
0	яти	71 + 9L	0000-00EF JMP	9000-000FF JSR	ILBNE 0	LD B, 0F	*	твлі (8),0	ADC A,	¥! ∀DC ¥'	่วย	АЭЯЯ	040 ZSHO	ГD 0 L 0'#!	16-91	ar-9L
	0	L L	5	3	*	G	9	L	8	6	۷	8	Э	D	Э	н

2-23

Instruction Execution Time

Most instructions are single byte (with immediate addressing mode instruction taking two bytes).

Most single instructions take one cycle time (1 $\,\mu s$ at 20 MHz) to execute.

See the BYTES and CYCLES per INSTRUCTION table for details.

BYTES and CYCLES per INSTRUCTION

The following table shows the number of bytes and cycles for each instruction in the format of byte/cycle (a cycle is 1 μ s at 20 MHz).

	(B)	Direct	Immed.
ADD	1/1	3/4	2/2
ADC	1/1	3/4	2/2
SUBC	1/1	3/4	2/2
AND	1/1	3/4	2/2
OR	1/1	3/4	2/2
XOR	1/1	3/4	2/2
IFEQ	1/1	3/4	2/2
IFGT	1/1	3/4	2/2
IFBNE	1/1	(
DRSZ		1/3	
SBIT	1/1	3/4	
RBIT	1/1	3/4	
IFBIT	1/1	3/4	

Memory Transfer Instructions

		lster rect [X]		immed.	Auto Inc	r Indirect cr & Decr [X+, X-]	
X A,*	1/1	1/3	2/3		1/2	1/3	
LD A,*	1/1	1/3	2/3	2/2	1/2	1/3	
LD B,Imm			{	1/1			(If B < 16)
LD B,Imm			}	2/3			(If B > 15)
LD Mem,Imm	2	/2	3/3	}	2/2		
LD Reg,Imm				2/3			

= > Memory location addressed by B or X or directly.

Instructions U	aing A & C	Transfer of Contr	ol instructions
CLRA	1/1	JMPL	3/4
INCA	1/1	JMP	2/3
DECA	1/1	JP	1/3
LAID	1/3	JSRL	3/5
DCORA	1/1	JSR	2/5
RRCA	1/1	JID	1/3
SWAPA	1/1	RET	1/5
SC	1/1	RETSK	1/5
RC	1/1	RETI	1/5
IFC	1/1	INTR	1/7
IFNC	1/1	NOP	1/1

The following table shows the instructions assigned to unused opcodes. This table is for information only. The operations performed are subject to change without notice. Do not use these opcodes.

Unused Opcode	Instruction	Unused Opcode	Instruction
60	NOP	A9	NOP
61	NOP	AF	LD A, (B)
62	NOP	B1	$C \rightarrow HC$
63	NOP	B4	NOP
67	NOP	B5	NOP
8C	RET	B7	X A, [X]
99	NOP	B9	NOP
9F	LD [B], #i	BF	LD A, [X]
A7	X A, [B]		
A8	NOP		

Development Support

MOLE DEVELOPMENT SYSTEM

The MOLE (Microcomputer On Line Emulator) is a low cost development system and emulator for all microcontroller products. These include COPS™ and the HPC™ family of products. The MOLE consists of a BRAIN Board, Personality Board and optional host software.

The purpose of the MOLE is to provide the user with a tool to emulate code for the target microcontroller and assist in both software and hardware debugging of the system.

It is a self contained computer with its own firmware which provides for all system operation, emulation control, communication, PROM programming and diagnostic operations.

It contains three serial ports to optionally connect to a terminal, a host system, a printer or a modem, or to connect to other MOLEs in a multi-MOLE environment.

MOLE can be used in either a stand alone mode or in conjunction with a selected host system using PC-DOS communicating via a RS-232 port.

Single Chip Emulator Device

The COP820C is fully supported by a form, fit and function emulator device, the COP8720C.

Option List

The COP820C/COP840C mask programmable options are listed out below. The options are programmed at the same time as the ROM pattern to provide the user with hardware flexibility to use a variety of oscillator configuration.

OPTION 1: CKI INPUT

= 1 Normal Mode Crystal	(CKI/10) CKO for crystal con- figuration
= 2 Normal Mode External	(CKI/10) CKO available as G7 input
= 3 R/C	(CKI/10) CKO available as G7 input
= 4 High Speed Crystal	(CKI/20) CKO for crystal con- figuration
= 5 High Speed External	(CKI/20) CKO available as G7 input
OBTION & CODADC (COD	

OPTION 2: COP820C/COP840C BONDING

- = 1 28 pin package
- = 2 24 pin package
- = 3 20 pin package

The following option information is to be sent to National along with the EPROM.

Option Data

Option 1 Value_is: CKI Input Option 2 Value_is: COP Bonding

How to Order

To order a complete development package, select the section for the microcontroller to be developed and order the parts listed.

Development Tools Selection Table

Microcontroller	Order Part Number	Description	Includes	Manual Number
	MOLE-BRAIN	Brain Board	Brain Board Users Manual	420408188-001
	MOLE-COP8-PB1	Personality Board	COP820/840 Personality Board Users Manual	420410806-001
COP820/ COP840	MOLE-COP8-IBM	Assembler Software for IBM	COP800 Software Users Manual and Software Disk	424410527-001
			PC-DOS Communications Software Users Manual	420040416-001
	420410703-001	Programmer's Manual		420410703-001

DIAL-A-HELPER

Dial-A-Helper is a service provided by the Microcontroller Applications Group. The Dial-A-Helper is an Electronic Bulletin Board information system and additionally, provides the capability of remotely accessing the MOLE development system at a customer site.

INFORMATION SYSTEM

The Dial-A-Helper system provides access to an automated information storage and retrieval system that may be accessed over standard dial-up telephone lines 24 hours a day. The system capabilities include a MESSAGE SECTION (electronic mail) for communications to and from the Microcontroller Applications Group and a FILE SECTION which consists of several file areas where valuable application software and utilities could be found. The minimum requirement for accessing the Dial-A-Helper is a Hayes compatible modem.

If the user has a PC with a communications package then files from the FILE SECTION can be down-loaded to disk for later use.

ORDER P/N: MOLE-DIAL-A-HLP

Information System Package contains:

Dial-A-Helper Users Manual

Public Domain Communications Software

FACTORY APPLICATIONS SUPPORT

Dial-A-Helper also provides immediate factory applications support. If a user is having difficulty in operating a MOLE, he can leave messages on our electronic bulletin board, which we will respond to, or under extraordinary circumstances he can arrange for us to actually take control of his system via modem for debugging purposes.

