

CXD1178Q

8-bit 40MSPS RGB 3-channel D/A Converter

Description

The CXD1178Q is an 8-bit high-speed D/A converter for video band use. It has an input/output equivalent to 3 channels of R, G and B. It is suitable for use of digital TV, graphic display, and others.

Features

- Resolution 8-bit
- Maximum conversion speed 40MSPS
- RGB 3-channel input/output
- Differential linearity error ±0.3LSB
- Low power consumption 240 mW (200 Ω load at 2 Vp-p output)
- Single 5 V power supply
- Low glitch noise
- Stand-by function

Structure

Silicon gate CMOS IC

Absolute Maximum Ratings (Ta=25 °C)

- Supply voltage AVDD, DVDD 7 V
- Input voltage (All pins)
 - VIN VDD+0.5 to Vss-0.5 V
- Output current (Every each channel)
 - Ιουτ 0 to 15 mA
- Storage temperature Tstg -55 to +150 °C

Recommended Operating Conditions

- Supply voltage AVDD, AVss 4.75 to 5.25 V
 - DVpd, DVss 4.75 to 5.25 V
- Reference input voltage
 - Vref 2.0 V
- Clock pulse width
 - TPW1, TPW0 11.2 ns (min.) to 1.1 µs (max.)
- Operating temperature
 - Topr -40 to +85 °C

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram

Pin Configuration

Pin Description and I/O Pins Equivalent Circuit

Pin No.	Symbol	I/O	Equivalent circuit	Description
1 to 8	R0 to R7			Digital input
9 to 16	G0 to G7	I		R0 (LSB) to R7 (MSB) G0 (LSB) to G7 (MSB) B0 (LSB) to B7 (MSB)
17 to 24	B0 to B7		o DVss	
25	BLK	I	25 DVbb DVss	Blanking input. This is synchronized with the clock input signal for each channel. No signal at "H" (Output 0 V). Output condition at "L".
32	VB	0	DVDD O O COL DVSS O DVDD O COL DVSS O DVDD	Connect a capacitor of about 0.1 µF.

—3—

Pin No.	Symbol	I/O	Equivalent circuit	Description		
	Cymbol					
27	RCK			Clock input.		
28	GCK	I		Note) Even though 1 channel and/ or 2 channel are used, be sure to input the clock signal to RCK.		
29	ВСК		o DVss			
30, 31	DVss	—		Digital GND		
33	AVss	—		Analog GND		
26	CE	I		Chip enable input. This is not synchronized with the clock input signal. No signal (Output 0 V) at "H" and minimizes power consumption.		
35	IREF	0		Reference current output. Connect a resistance 16 times "16Rout" that of output resistance value "Rout".		
34	VREF	I	AVDD AVDD AVSS AVDD AVSS AVDD AVSS AVDD AVDD AVDD AVDD AVDD AVDD AVDD AVDD AVDD AVDD AVDD AVDD AVDS AVDD AVDD AVDS AVDD AVDS AVDD AVDS AVDD AVDS AVDD AVDS AVDD AVDS AVDD AVDS AVDD AVDS AVDD AVDS AVDD AVDS AVDD AVDS AVDD AVDS AVDD AVDS AVDD	Reference voltage input. Set full scale output value.		
42	VG	0	AVss	Connect a capacitor of about 0.1 µF.		
43 to 46	AVdd			Analog VDD		

—4—

Pin No.	Symbol	I/O	Equivalent circuit	Description
37	RO			
39	GO			Current output pins. Voltage output can be obtained by connecting a resistance.
41	во	0		
36	RO			
38	GO		40 AVss	Inverted current output. Normally dropped to analog GND.
40	BO			
47, 48	DVdd	—		Digital VDD

Item	Symbol	Measurement co	nditions	Min.	Тур.	Max.	Unit	
Resolution	n				8		bit	
Conversion speed	fclĸ	AVDD=DVDD=4.75 to 5.25 V Ta=-40 to 85 °C		0.5		40	MSPS	
Integral non-linearity error	Eι	- Endpoint		-2.5		2.5	LSB	
Differential non-linearity error	ED			-0.3		0.3	LSB	
Output full-scale voltage	Vfs			1.8	2.0	2.2	V	
Output full-scale ratio *1	Fsr			0	1.5	3.0	%	
Output full-scale current	lfs				10	15	mA	
Output offset voltage	Vos	When "00000000" da	ita input			1	mV	
Glitch energy	GE	R ουτ= 75 Ω			30		pV•s	
Crosstalk	СТ	When 1 MHz sine wa	ave input		57		dB	
Supply ourrent	ldd	14.3MHz color bar	CE= "L"		42	48		
Supply current	Іѕтв	data input	CE= "H"		1	2	- mA	
Analog input resistance	Rin	VREF		1			MΩ	
Input capacitance	Сі					9	pF	
Digital input valtage	Vін	AVDD=DVDD=4.75 to	5.25 V	2.4			V	
Digital input voltage	VIL	Ta=–20 to 75 °C				0.8		
Digital input current	Ін	AVpd=DVpd=4.75 to 5.25 V Ta=–20 to 75 °C		-5		5	μA	
Digital liput current	lı∟					5		
Setup time	ts	Rout=75 Ω		5			ns	
Hold time	th	Rout=75 Ω		10			ns	
Propagation delay time	t PD				10		ns	
CE enable time *2	tE	<u>CE</u> = H→L			1.8	4	ms	
CE disable time *2	tD	<u>CE</u> = L→H			1.8	4	ms	

<i>///</i>	••• • • • · · ·			
(tci κ=40 MHz.	AVDD=DVDD=5 V,	ROUT=200 Ω .	$V_{RFF}=2.0 V_{\odot}$	Ta=25 °C)
(••••••••••	

*1 Full-scale output ratio = $\begin{vmatrix} Full-scale voltage of channel \\ Average of the full-scale voltage of the channels \\ -1 \\ \times 100 (\%)$

*2 When the external capacitor for the VG pin is 0.1 $\mu F.$

Electrical Characteristics Measurement Circuit Analog Input Resistance Digital Input Current

Maximum Conversion Velocity Measurement Circuit

Crosstalk Measurement Circuit

DC Characteristics Measurement Circuit

Propagation Delay Time Measurement Circuit

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Notes on Operation

• How to select the output resistance

The CXD1178Q is a D/A converter of the current output type. To obtain the output voltage connect the resistance to current output pins (RO, GO and BO). For specifications we have;

Output full scale voltage VFs=1.8 to 2.2 [V]

Output full scale current IFS=less than 15 [mA]

Calculate the output resistance value from the relation of VFS=IFS \times ROUT. Also, 16 times resistance of the output resistance is connected to reference current pin IREF. In some cases, however, this turns out to be a value that does not actually exist. In such a case a value close to it can be used as a substitute. Here please note that VFS becomes

VFS=VREF × 16ROUT/RIR.

VREF is the voltage set at the VREF pin and ROUT is the resistance connected to current output pins (RO, GO and BO) while RIR is connected to IREF.

Increasing the resistance value can curb power consumption. On the other hand glitch energy and data settling time will inversely increase. Set the most suitable value according to the desired application.

• Phase relation between data and clock

To obtain the expected performance as a D/A converter, it is necessary to set properly the phase relation between data and clock applied from the exterior. Be sure to satisfy the provisions of the setup time (ts) and hold time (tH) as stipulated in the Electrical Characteristics.

• Power supply and ground

To reduce noise effects separate analog and digital systems in the device periphery. For power supply pins, both digital and analog, bypass respective grounds by using a ceramic capacitor of about 0.1 μ F, as close as possible to the pin.

Latch up

Analog and digital power supply have to be common at the PCB power supply source. This is to prevent latch up due to voltage difference between AVDD and DVDD pins when power supply is turned ON.

• On inverted current output pins

The \overline{RO} , \overline{GO} and \overline{BO} are the inverted current output terminal as described in the Pin Description.

The sums shown below become the constant value for any input data.

- a) The sum of the currents output from the $\overline{\text{RO}}$ and RO pins.
- b) The sum of the currents output from the $\overline{\text{GO}}$ and GO pins.
- c) The sum of the currents output from the $\overline{\text{BO}}$ and $\overline{\text{BO}}$ pins.

However, the output current from the \overline{RO} , \overline{GO} and \overline{BO} pins is not guaranteed of its performances such as linearity errors, etc.

On output full-scale voltage

When the output full-scale voltage is used without adjustment in the application that uses the RGB signal, the color balance may be broke.

Clock input signal

Even though 1 channel and/ or 2 channel are used, be sure to input the clock signal to RCK(Pin 27).

Latch Up Prevention

The CXD1178Q is a CMOS IC which required latch up precautions. Latch up is mainly generated by the lag in the voltage rising time of AV_{DD} (Pins 43 to 46) and DV_{DD} (Pins 47 and 48), when power supply is ON.

1. Correct usage

a. When analog and digital supplies are from different sources

- b. When analog and digital supplies are from a common source
 - (i)

(ii)

- 2. Example when latch up easily occurs
- a. When analog and digital supplies are from different sources

b. When analog and digital supplies are from common source

(i)

(ii)

Example of Representative Characteristics

Package Outline Unit : mm

48PIN QFP (PLASTIC)

PACKAGE STRUCTURE

SONY CODE	QFP-48P-L04
EIAJ CODE	QFP048-P-1212
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	42/COPPER ALLOY
PACKAGE MASS	0.7g

Package Outline Unit : mm

48PIN QFP (PLASTIC)

PACKAGE STRUCTURE

SONY CODE	QFP-48P-L04
EIAJ CODE	QFP048-P-1212
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	PALLADIUM PLATING
LEAD MATERIAL	COPPER ALLOY
PACKAGE MASS	0.7g