

CXD2309Q

10-bit 50MSPS 3-Channel D/A Converter

Description

The CXD2309Q is a 10-bit high-speed D/A converter for video band, featuring RGB 3-channel input/output. This is ideal for use in high-definition TVs and high-resolution displays.

Features

- Resolution 10-bit
- Maximum conversion speed 50MSPS
- RGB 3-channel input/output
- Differential linearity error ±0.5 LSB
- Low power consumption 200mW (200Ω load for 2Vp-p output)
- Single +5V power supply
- Low glitch
- 48-pin QFP package

Recommended Operating Conditions

 Supply voltage 	AVdd, AVss	4.75 to 5.25 V
	DVDD, DVSS	4.75 to 5.25 V
Reference input voltage	Vref	0.5 to 2.0 V
 Clock pulse width 	TPW1	10 (Min.) ns
	Tpw0	10 (Min.) ns
 Operating temperature 	Topr	–20 to +75 °C

Block Diagram

Structure

Silicon gate CMOS IC

Absolute Maximum Ratings

 Supply voltage 	VDD	7	V
 Input voltage 	Vin	Vdd to Vss	V
 Output current 	Ιουτ	0 to 15	mΑ
 Storage temperature 	Tstg	–55 to +150	°C

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Pin Configuration

Pin Description and Equivalent Circuit

Pin No.	Symbol	Equivalent circuit	Description
1 to 10	R0 to R9		
11 to 20	G0 to G9		Digital input.
21 to 30	B0 to B9	DVss	
31	RCLK		
32	GCLK	(31) to (33	Clock pin.
33	BCLK	DVss	
34	DVss		Digital GND.
35	VB	DVDD DVDD d d d d d d d d d d d d d	Connect an approximately 0.1µF capacitor.

Pin No.	Symbol	Equivalent circuit	Description
36	Iref		Connect a "16R" resistor which are 16 times the output resistance "R".
37	Vref	AVDD AVDD AVSS 37 37 38 38 38 38 38 38 38 38	Sets an output full-scale value.
38	VG	AVss o	Connect an approximately 0.1µF capacitor.
39 to 41	AVdd		Analog Vod.
42	RO		
44	GO	$\begin{array}{c c} & 44 \\ & 46 \\ & 46 \\ & AVss \\ \end{array}$	Current output. Output can be obtained by connecting a resistor (200Ω typ.).
46	во	AVSS 0	
43, 45, 47	AVdd		Analog GND.
47, 48	DVdd		Digital VDD.

			(ICLK = 50101112, VDD = 50	, 11 = 2003	E , V IXEI –	2.00, 10	- 20 0)
lte	m	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
Resolution		n			10		bit
Maximum conv	version speed	fмах		50			MSPS
Linearity erro	r	EL		-2.0		2.0	LSB
Differential lir	nearity error	Ed		-0.5		0.5	LSB
Output full-so	ale voltage	Vfs		1.8	1.92	2.0	V
Output full-so	ale current	IFS		9.0	9.6	10	mA
Output offset	voltage	Vos				1	mV
Supply curre	nt	ldd			40	50	mA
Digital input	High level	Ін				5	μA
current	Low level	lı∟		-5			μA
Digital input	High level	Vін	(DVDD = 4.75 to 5.25V)	2.15			V
voltage	Low level	Vı∟	(DVDD = 4.75 to 5.25V)			0.85	V
Output full-so	ale ratio	Fsr		0		3	%
Precision gua output voltag		Voc		1.8	1.92	2.0	V
Setup time		ts		6			ns
Hold time		th		3			ns
Propagation	delay time	t PD			14		ns
Glitch energy	,	GE	For Rout = 100Ω , 1Vp-p output		50		pV-s
Cross talk		СТ	For 10MHz sine wave output	40	42		dB
SNR		SNR	For 1MHz sine wave output	50	55		dB

Electrical Characteristics

(fclk = 50MHz, Vdd = 5V, R = 200 Ω , Vref = 2.0V, Ta = 25°C)

Output full-scale ratio = $\left| \frac{\text{Full-scale voltage for each channel}}{\text{Average of full-scale voltage for each channel}} - 1 \right| \times 100 (\%)$

Maximum conversion rate measurement circuit

Setup hold time Glitch energy measurement circuit

DC characteristics measurement circuit

Propagation delay time measurement circuit

SNR measurement circuit

Application Circuit

- When the power supply (AVDD and DVDD) is 5.0V.
- R1 = 200Ω
- R2 = 3.3kΩ
- R3 = 3.0kΩ
- R4 = 2.0kΩ
- $C = 0.1 \mu F$

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Example of Representative Characteristics

Fig. 1. Output full-scale voltage vs. Reference voltage

Fig. 2. Output resistance vs. Glitch energy

Fig. 3. Output full-scale voltage vs. Ambient temperature

100 50 50 0 100 50 100 100 200 Οutput resistance [Ω]

Fig. 4. Output frequency vs. Current consumption

Standard Measurement Conditions and description

- VDD = 5.0V
- Vref = 2.0V
- R = 200Ω
- 16R = 3.3kΩ
- Ta = 25°C
- VREF in the Fig. 3. is fixed to 2Vdc without resistor dividing.
- Input data in Fig. 4. = all "0" and "1" of rectangular wave, clock frequency = 50MHz for a total value of three channels.

Notes on Operation

• Selecting the Output Resistance

CXD2309Q is a current output type D/A converter. To create the output voltage, connect the resistor to the current output pin.

Specifications: Output full-scale voltage VFs max = 2.0 [V]

Output full-scale current IFS max = 10 [mA]

Calculate the output resistance from VFs = IFs \times R. Connect a resistance sixteen times the output resistance to the reference current pin IREF. In some cases, as this value may not exist, a similar value can be used instead.

Note that the VFs will be the following.

Vfs = Vref \times 16 R/R'

R is the resistor to be connected to the IO and R' is the resistor to be connected to the IREF. Power consumption can be reduced by increasing the resistance, but this will on the contrary increase the glitch energy and data setting time. Set the best values according to the purpose of use.

Correlation between Data and Clock

For CXD2309Q to display the desired performance as a D/A converter, the data transmitted from outside and the clock must be synchronized properly. Adjust the setup time (ts) and hold time (th) as specified in "Electrical Characteristics".

• Vdd, Vss

Separate the analog and digital signals around the device to reduce noise effects. Bypass the V_{DD} pin to each GND with a 0.1μ F ceramics capacitor as near as possible to the pin for both the digital and analog signals.

Latch up

The AVDD and DVDD pins must be able to share the same power supply of the board. This is to prevent latch up caused by potential difference between the two pins when the power is turned on.

• IREF pin

The IREF pin is very sensitive to improve the AC characteristics. Pay attention for capacitance component not to attach to this pin because its output may become unstable.

• VG pin

It is recommended to use a $1\mu F$ capacitor to improve the AC characteristics though the typical capacitance value externally connected to the VG pin is $0.1\mu F.$

Package Outline Unit

Unit : mm

48PIN QFP (PLASTIC)

PACKAGE STRUCTURE

SONY CODE	QFP-48P-L04
EIAJ CODE	*QFP048-P-1212-B
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER / PALLADIUM PLATING
LEAD MATERIAL	COPPER / 42 ALLOY
PACKAGE WEIGHT	0.7g