

CXD2315Q

10-bit 80MSPS 1ch D/A Converter (Ultra-low Glitch Version)

Description

The CXD2315Q is a 1-ch 10-bit 80MSPS D/A converter for monitor and video. This IC achieves high specifications for the industrial and information equipment due to the reduction of the glitch energy.

Features

- 10-bit resolution
- Maximum conversion rate
 80MSPS
- Dofferential linearity error ±0.5LSB
- Low power consumption 150mW
- (When 80MSPS 200Ω load, 2Vp-p is output)Pin-compatible with CXD2306Q
- Single 5V power supply
- Built-in independent constant-voltage source
- Ultra-low glitch

Recommende Operation Conditions

AVDD, AVSS	5.0 ± 0.25	V
DVDD, DVSS	5.0 ± 0.25	V
oltage		
Vref	0.5 to 2.0	V
t pw₁	6.25 (min.)	ns
tpw0	6.25 (min.)	ns
ature		
topr	-20 to +75	°C
	DVDD, DVss bltage VREF tpw1 tpw0 ature	DVDD, DVss 5.0 ± 0.25 bltage VREF 0.5 to 2.0 tpw1 6.25 (min.) tpw0 6.25 (min.) ature 6.25 (min.)

Structure

Silicon gate CMOS IC

Absolute Maximum Ratings (Ta = 25°C)

 Supply voltage 	Vdd	7	V
 Input voltage 	Vin	Vss - 0.5 to Vdd +	0.5 V
 Output voltage 	Ιουτ	0 to 15	mΑ
 Storage tempera 	ture		
	Tstg	-55 to +150	°C

Block Diagram

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Pin Configuration

Pin Description and Equivalent Circuit

Pin No.	Symbol	Equivalent circuit	Description
30 to 32 1 to 7	D0 to D9	30 to 7	Digital input
10	BLK		Blanking pin. No signal (0V output) at high and output state at low.
14	VB	DVDD O DVDD O DVDD O DVDD O DVSS	Connect a capacitor of approximately 0.1µF.
9	CLK		Clock pin
15, 27	DVss		Digital GND
25	AVss		Analog GND
17	Iref	AVDD O AVDD AVDD O AVDD AVDD O AVDD AVDD O AVDD AVDD O AVDD AVDD O O AVDD AVDD O O AVDD AVDD O O O O O O O O O O O O O O O O O O	Connect resistance "16R" which is 16 times output resistance "R".
19	Vref		Sets output full scale value.
22	VG	AVSS 0 (22)	Connect a capacitor of Approximately 0.1µF.

Pin No.	Symbol	Equivalent circuit	Description
20, 21	AVdd		Analog Vod
24	IO	AVDD of the second seco	Current output pin. Output can be retrieved by connecting resistance. The standard is 200Ω .
23	Ō	AVDD 23 AVss o	Inverted current output pin. Connect to GND normally.
13, 28	DVdd		Digital VDD
11	CE	11 DVDD DVss	Chip eneble pin. No signal (0V output) at high makes power consumption minimum.
18	Sref	AVDD o AVDD o AVSS O AVSS O AVSS	Independent constant-voltage source output pin using band gap reference. Stable voltage independent of the fluctuation for supply voltage can be get by connecting to VREF. See Application Circuit 2 for details.

Electrical Characteristics

(fclk = 80MHz, VDD = 5V, R = 200Ω, VREF = 2.0V, 16R = 3.3KΩ, Ta = 25°C)

	Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
Resolution		n			10		bit
Maximum conve	rsion rate	fмах		80			MSPS
Linearity error		EL		-1.5		1.5	LSB
Differential linear	rity error	ED		-0.5		0.5	LSB
Output full-scale	voltage	VFS		1.8	1.94	2.0	V
Output full-scale	current	IFS		9.0	9.7	10	mA
Output off-set vo	ltage	Vos				1	mV
Output impedance	ce				300		kΩ
Supply current		ldd				30	mA
Digital Input	High level	Ін				5	μA
current	Low level	lı∟		-5			μA
Digital Input	High level	Viн		2.45			V
voltage	Low level	Vil				0.85	V
Accuracy guarar	ntee output voltage range	Voc		1.8	1.94	2.0	V
Setup time		ts		3.0			ns
Hold time		th		3.0			ns
Rise time		tr		5.0			ns
Propagation dela	ay time	t PD			5		ns
Glitch energy		GE	Rout = 200Ω, 2Vp-p			30	pV-s
Differential gain		DG				1.0	%
Differential phas	е	DP				1.0	deg
SREF output volta	age	Sref	Ta = 25°C	1.0	1.2	1.45	V

Maximum Conversion Rate Measurement Circuit

DC Characteristics Measurement Circuit

Propagation Delay Time Measurement Circuit

Setup Hold Time and Glitch Energy Measurement Circuit

Description of Operation Timing Chart

I/O Correspondence Table

(When 2.00V output full-scale voltage)

Input code	Output voltage
MSB LSB	
1 1 1 1 1 1 1 1 1 1	2.0V
:	1.01/
1000000000	1.0V
0000000000	0V

Application Circuit 1

- When 5.0V supply voltage (DVDD and AVDD)
- Digital input from Pins 30 to 32 and Pins 1 to 7
- Pin 18 is left open when using normally
- R1 = 200Ω
- R2 = $3.3k\Omega$ (resistance 16 times R1)
- R3 = $3.0k\Omega$
- R4 = $2.0k\Omega$
- C = 0.1µF

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Application Circuit 2

- R2 = 2.0kΩ
- C = 0.1µF

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Example of Representative Characteristics

Fig. 1. Output full-scale voltage vs. Reference voltage

VREF - Reference voltage [V]

Fig. 3. SREF vs. Ambient temperature

Fig. 4. Output frequency vs. Current consumption

25

Ambient temperature [°C]

0

Standard Measurement Conditions and Description

• VDD = 5.0V • VREF = 2.0V

1.95

1.93

0

-25

Output full-scale voltage [V]

- R = 200Ω
- 16R = 3.3kΩ
- Ta = 25°C
- The temperature characteristics of external
- Input data in Fig. 4 = all "0" and "1" of rectangular wave; clock frequency = 80MHz.

Fig. 2. Output full-scale voltage vs. Ambient temperature

 $\Delta V = 0.20 \text{mV/°C}$

50

75

GE (Glitch energy)

GE, described in the CXD2315Q, is a spike noise which appears synchronizing with the clock falling edge when the input data (for 1 to 1024 input) changes to 128, 256, 384, 512, 640, 768, 896, and 1024. Fig. 5 shows the change state of GE for the staircase wave output, and Fig. 6 shows the repetitive output waveform where the GE appears. These figures exhibit the difference of this IC from the conventional device.

Fig. 5. Change of GE for staircase wave output

The CXD2315Q reduces the GE much shown in Fig.s 5 and 6.

Notes on Operation

• Selecting the Output Resistance

CXD2315Q is a current output type D/A converter. To create the output voltage, connect the resistor to the current output pin.

Specifications: Output full-scale voltage VFs max = 2.0 [V]

Output full-scale current IFS max = 10 [mA]

Calculate the output resistance from VFS = $IFS \times R$. Connect a resistance sixteen times the output resistance to the reference current pin IREF. In some cases, as this value may not exist, a similar value can be used instead.

Note that the VFs will be the following.

 $VFS = VREF \times 16 R/R'$

R is the resistor to be connected to the IO and R' is the resistor to be connected to the IREF. Power consumption can be reduced by increasing the resistance, but this will on the contrary increase the glitch energy and data settling time. Set the best values according to the purpose of use.

Correlation between Data and Clock

For the CXD2315Q to display the desired performance as a D/A converter, the data transmitted from outside and the clock must be synchronized properly. Adjust the setup time (ts) and hold time (th) as specified in "Electrical Characteristics".

• Vdd, Vss

Separate the analog and digital signals around the device to reduce noise effects. By-pass the V_{DD} pin to each GND with a 0.1μ F ceramics capacitor as near to the pin as possible for both the digital and analog signals.

Latch up

The AV_{DD} and DV_{DD} pins must be able to share the same power supply of the board. This is to prevent latch up caused by potential difference between the two pins when the power is turned on.

• IREF pin

The IREF pin is very sensitive to improve the AC characteristics. Pay attention for capacitance component not to attach to this pin because its output may become unstable.

• VG pin

It is recommended to use a 1μ F capacitor to improve the AC characteristics though the typical capacitance value externally connected to the VG pin is 0.1μ F.

• Sref

The SREF is an independent regulated current source. By connecting it to the VREF, stable output amplitudes that do not depend on fluctuations in the power supply can be obtained.

In this case, as $V_{FS} = S_{REF} \times 16R/R'$, set the VFs according to R'.

Do not use this pin as a reference power supply for other ICs because this is declicated for the D/A converter.

Package Outline Unit: mm

SONY CODE	QFP-32P-L01
EIAJ CODE	QFP032-P-0707
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
I FAD MATERIAI	42 ALLOY
EE/ B IN/ ITERNIA	
PACKAGE MASS	0.2g
FACINAGE MIASS	0.29