

SP4T Antenna Switch

CXG1234XR

Description

The CXG1234XR is an SP4T antenna switch.

On chip logic reduces component count and simplifies PCB layout by allowing direct connection of the switch to digital baseband control lines with the CMOS logic levels. It requires 2 CMOS control lines. The Sony GaAs JPHEMT MMIC Process is used for low insertion loss.

Features

- Insertion loss: 0.40dB (Typ.) @960MHz
 0.50dB (Typ.) @2170MHz
- ◆ Lead-Free and RoHS compliant

Package

Small package size: 16-pin XQFN (2.3mm \times 2.3mm \times 0.35mm) (Typ.)

Structure

GaAs JPHEMT MMIC

Absolute Maximum Ratings

 Bias voltage 	Vdd	7	V	(Ta = 25°C)
 Control voltage 	Vctl	5	V	(Ta = 25°C)
 Input power max. 		27	dBm	(824 to 915MHz, Ta = 25℃)
 Input power max. 		24	dBm	(1710 to 1980MHz, Ta = 25°C)
 Operating temperature 		-35 to +85	°C	
 Storage temperature 		–65 to +150	°C	
 Allowable power dissipation 	PD	100	mW	*1

*1 25mm \times 25mm \times t: 0.8mm, Mounted on standard board (FR-4)

This IC is ESD sensitive device. Special handling precautions are required.

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

SONY

Block Diagram

Pin Configuration

l

Truth Table

Port	А	В	F1	F2	F3	F4	F5	F6	F7	F8
ANT – RF1	Н	Н	ON	OFF	OFF	OFF	OFF	ON	ON	ON
ANT – RF2	Н	L	OFF	ON	OFF	OFF	ON	OFF	ON	ON
ANT – RF3	L	L	OFF	OFF	ON	OFF	ON	ON	OFF	ON
ANT – RF4	L	Н	OFF	OFF	OFF	ON	ON	ON	ON	OFF

DC Bias Condition

(Ta = 25°C)

Item	Min.	Тур.	Max.	Unit
Vctl (H)	1.5	1.8	3.6	
Vctl (L)	0	_	0.3	V
Vdd	2.6	2.8	3.6	

Electrical Characteristics

(Ta = 25°C, V_{DD} = 2.8V, Vctl = 0V/1.8V)

Item	Symbol	Port	Condition	Min.	Тур.	Max.	Unit	
Insertion loss	IL	Ant – RF1, 2, 3, 4	*1	—	0.40	0.55	dB	
Insention loss	1	AIII = RF1, 2, 3, 4	*2	—	0.50	0.65	uв	
VSWR	VSWR		869 to 2170MHz	_	1.2	1.5	—	
	2fo		*3	_	-50	-35		
Harmonics	3fo	Ant – RF1, 2, 3, 4	-	_	-45	-35	dBm	
Traimonics	2fo	Ant – N 1, 2, 3, 4	AIII = RF1, 2, 3, 4	*4	_	-50	-35	ubiii
	3fo			_	-50	-35		
IMD2	IMD2	Ant – RF1, 2, 3, 4	*5	_	-94	-84	dBm	
Input IP2	IIP2	-101 - 101 - 1, 2, 3, 4		89	99	—	dBm	
IMD3	IMD3	Ant – RF1, 2, 3, 4	*6	_	-91	-81	dBm	
Input IP3	IIP3	Aiii = 1(1, 2, 3, 4)		53	58	—	dBm	
Control current	Ictl		Vctl = 1.8V	_	10	25	μA	
Supply current	ldd		VDD = 2.8V (state: HH)	_	160	260	μA	
Switching speed	Swt		50% Ctl to 90% RF	—	3	6	μS	

Electrical characteristics are measured with all RF ports terminated in 50Ω .

- ^{*1} Power incident on Ant, Pin = 0dBm, 869 to 960MHz.
- *2 Power incident on Ant, Pin = 0dBm, 1805 to 2170MHz.
- *3 Power incident on RFx, Pin = 24dBm, 824 to 915MHz.
- ^{*4} Power incident on RFx, Pin = 21dBm, 1710 to 1980MHz.
- *5 Pin = 20dBm, Ftx = 1950MHz, PBlocker = -15dBm, FBlocker = 190MHz, Fim = 2140MHz, IIP2 = Pin + (PBlocker - IMD2)
- *6 Pin = 20dBm, Ftx = 1950MHz, PBlocker = -15dBm, FBlocker = 1760MHz, Fim = 2140MHz, IIP3 = Pin + (PBlocker - IMD3)/2

SONY

(Ta = 25°C, V_{DD} = 2.8V, Vctl = 0V/1.8V)

ltem	Cumbal		Port	Condition	Min	Turn	Max	Linit
Item	Symbol	Active	Port	Condition	Min.	Тур.	Max.	Unit
		Ant – RF2		20	33	_		
			Ant – RF3	*1	20	32	_	
		RF1	Ant – RF4		20	32	_	
			Ant – RF2		20	38	_	
			Ant – RF3	*2	20	35	_	
			Ant – RF4		20	31	_	
			Ant – RF1		20	31	_	
			Ant – RF3	*1	20	33		
		RF2	Ant – RF4		20	30		
		1112	Ant – RF1	*2	20	26	_	
	Isolation ISO.		Ant – RF3		20	28	_	
Isolation			Ant – RF4		20	24	_	
Isolation	130.		Ant – RF1		20	31	_	uв
			Ant – RF2	*1	20	30		
		RF3	Ant – RF4		20	32		
		Ant – RF1	20	27				
			Ant – RF2	*2	20	26		
			Ant – RF4		20	28		
	$RF4 = \frac{Ant - RF1}{Ant - RF2} *1$ $Ant - RF3$ $Ant - RF1$	Ant – RF1		20	32			
			Ant – RF2	*1	20	31	_	1
		Ant – RF3		20	34	_		
			20	27				
			Ant – RF2	*2	20	31	_	
			Ant – RF3		20	37	_	

Electrical characteristics are measured with all RF ports terminated in 50Ω .

*1 Power incident on Ant, Pin = 0dBm, 869 to 960MHz.

*2 Power incident on Ant, Pin = 0dBm, 1805 to 2170MHz.

Recommended Circuit

When using this IC, the following external components should be used: CRF: This capacitor is used for RF decoupling and must be used for all applications. Cbypass: This capacitor is used for DC line filtering. 100pF is recommended.

*1 Inductor (56nH) is recommended on Ant port for ESD protection. Capacitors are required on all RF ports for DC blocking.

Package Outline

(Unit: mm)

16PIN XQFN (PLASTIC)

TERMINAL SECTION

Note:Cutting burr of lead are 0.05mm MAX.

SONY CODE	X Q F N - 1 6 P - 0 1
JEITA CODE	
JEDEC CODE	

AP-4000-16033BS Rev. ()

PACKAGE STRUCTURE

PACKAGE MATERIAL	EPOXY RESIN
TERMINAL TREATMENT	SOLDER PLATING
TERMINAL MATERIAL	COPPER ALLOY
PACKAGE MASS	0.019

LEAD PLATING SPECIFICATIONS

ITEM	SPEC.
LEAD MATERIAL	COPPER ALLOY
SOLDER COMPOSITION	Sn-Bi Bi:1-4wt%
PLATING THICKNESS	5-18µm