SONY

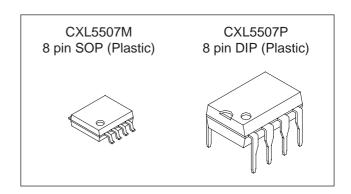
CXL5507M/P

CMOS-CCD 1H Delay Line for NTSC

Description

The CXL5507M/P are CMOS-CCD delay line ICs that provide 1H delay time for NTSC signals including the external low-pass filter.

Features


- Single 5V power supply
- Low power consumption 50mW (Typ.)
- Built-in peripheral circuits

Functions

- 453-bit CCD register
- Clock driver
- Auto-bias circuit
- Input clamp circuit
- Sample-and-hold circuit

Structure

CMOS-CCD

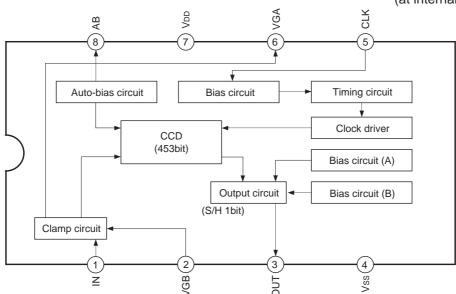
Absolute Maximum Ratings (Ta = 25°C)

- Supply voltage
 Operating temperature
 Storage temperature
 Topr
 Topr
 10 to +60
 C
 Storage temperature
 Tstg
 Tstg
- Allowable power dissipation

PD

CXL5507M 350 mW CXL5507P 480 mW

Recommended Operating Condition (Ta = 25° C) Supply voltage VDD $5 \pm 5\%$


Recommended Clock Conditions (Ta = 25°C)

- Input clock amplitude VCLK 0.3 to 1.0 Vp-p (0.5Vp-p typ.)
- Clock frequency fclk 7.159090 MHz
- Input clock waveform Sine wave

Blook Diagram and Pin Configuration (Top View)

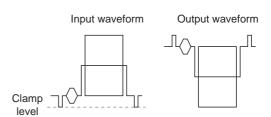
Input Signal Amplitude
Vsig 500mVp-p (Typ.), 527mVp-p (Max.)

(at internal clamp condition)

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Pin Description

Pin No.	Symbol	I/O	Description	Impedance
1	IN	I	Signal input	> 10kΩ at no clamp
2	VGB	I	Gate control B	
3	OUT	0	Signal output $40 \text{ to } 500\Omega$	
4	Vss	_	GND	
5	CLK	I	Clock input	> 100kΩ
6	VGA	0	Gate control A	
7	VDD	_	Power supply (5V)	
8	AB	0	Auto-bias DC output 600 to 200kΩ	


Description of I/O Signals

Input signals are low level clamped and output signals are inverted in relation to the input signals. Also, the clamp condition of input signals are controlled by VGB (Pin 2) conditions.

0V Internal clamp condition

5V Non internal clamp condition

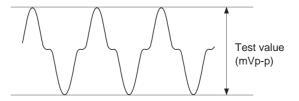
Center biased to approx. 2.1V by means of the IC internal resistance (approx. $10k\Omega$). In this mode, the input signal is limited to APL 50% and the maximum input signal amplitude is 200mVp-p.

Electrical Characteristics

(Ta = 25°C, V_{DD} = 5V, fclk = 7.159090MHz, V_{CLK} = 500mVp-p, sine wave) See "Electrical Characteristics Test Circuit"

Item	Symbol Test condition	Tost condition	SW condition				n	Bias	Min.	Typ	Max.	Unit	Note
item		rest condition	1	2	3	4	5	condition V1 (V)	iviif1.	Тур.	iviax.	Unit	Note
Supply current	IDD	_	а	а	b	а	_		5	10	15	mA	1
Low frequency gain	GL	200kHz, 500mVp-p, sine wave	а	а	b	а	b		-2	0	2	dB	2
Frequency response	fg	200kHz ←→ 2MHz, 150mVp-p, sine wave	b c	а	а	b	b	2.1	-2	-1	0	dB	3
S/H pulse coupling	СР	No signal input		b	а	b	а	2.1		_	350	mVp-p	4
S/N ratio	SN	No signal input	_	b	а	b	С		54	56	_	dB	5
	LIS	5-staircase wave (For luminance	b	а	b a a		37 40	43					
Linearity	LIL		b	а	b	а	а	_	18	20	22	%	6
	LIC		b	а	b	а	а		56	60	64		

Notes

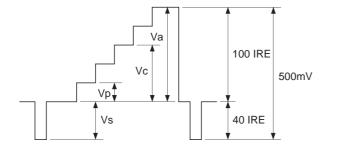

- (1) This is the IC supply current value during clock and signal input.
- (2) GL is the output gain of OUT pin when a 500mVp-p, 200kHz sine wave is fed to IN pin.

GL = 20 log
$$\frac{\text{OUT pin output voltage [mVp-p]}}{500 \text{ [mVp-p]}}$$
 [dB]

(3) Indicates the dissipation at 2MHz in relation to 200kHz.

From the output voltage at OUT pin when a 150mVp-p, 200kHz sine wave is fed to IN pin, and from the output voltage at OUT pin when a 150mVp-p, 2MHz sine wave is fed to same, calculation is made according to the following formula. Input bias is tested at 2.1V.

(4) The internal clock component to the output signal during no-signal input and the leakage of that high harmonic component are tested. Input bias is tested at 2.1V.

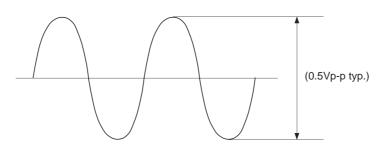


(5) Input no signal noise components are tested with the video noise meter at BPF 10kHz to 3MHz. This is calculated from the output gain (GL), at the input of 200kHz, 500mVp-p and according to the following formula.

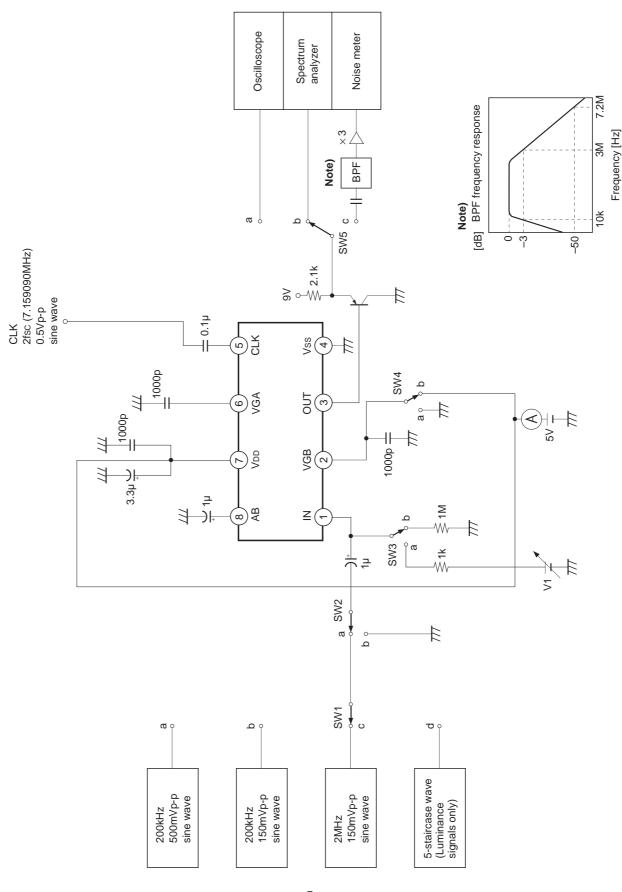
$$S/N = -20 \cdot log \frac{Noise (mVrms)}{0.5 \cdot 10^{GL/20}} [dB]$$

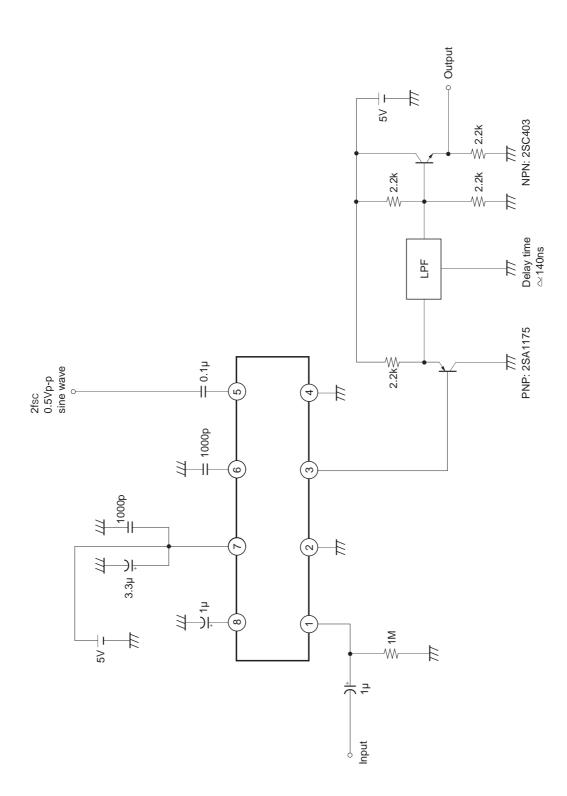
(6) Respective outputs are tested at the input of the 5-staircase waves seen in the figure below (luminance signals only) and calculated according to the formula below.

(However, output signals become inverted with regards to input.)

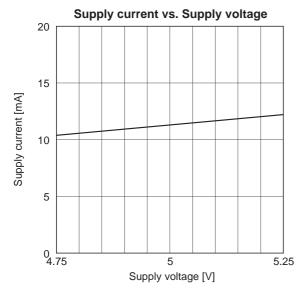

$$LIS = \frac{Vs}{Va} \times 100 \, [\%]$$

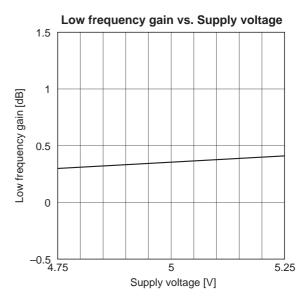

$$LIL = \frac{Vp}{Va} \times 100 \, [\%]$$

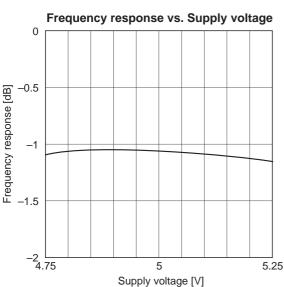

$$LIC = \frac{Vc}{Va} \times 100 \, [\%]$$

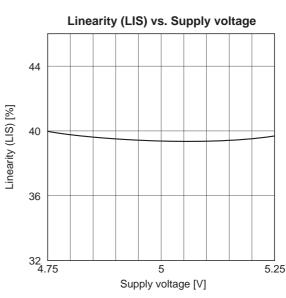

Clock

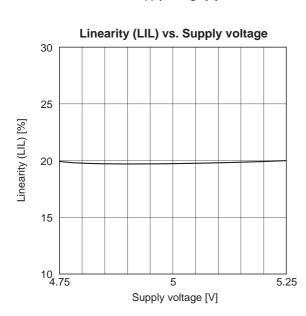
2fsc (7.159090MHz) sine wave

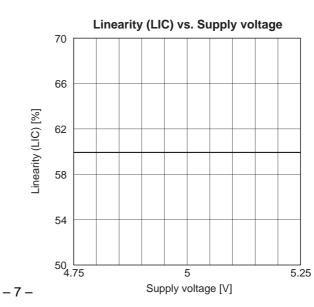




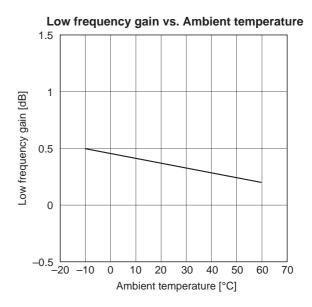


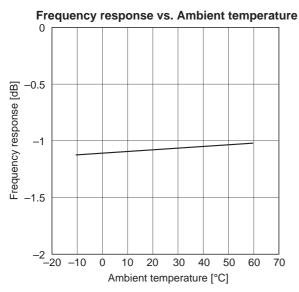

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

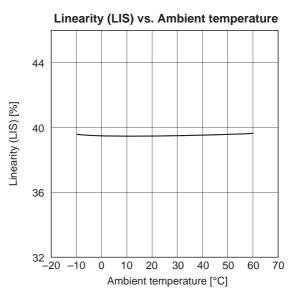

Example of Representative Characteristics

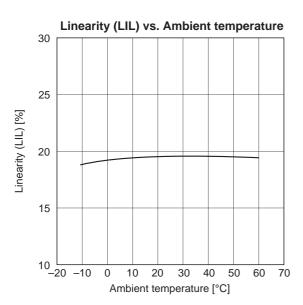


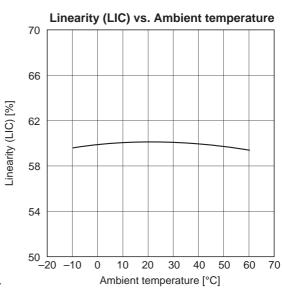


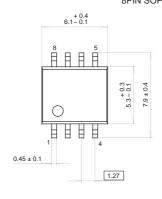


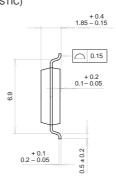


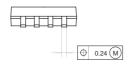






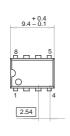

-8-

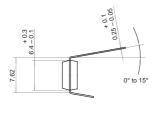

Package Outline

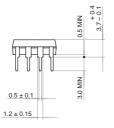

CXL5507M

8PIN SOP (PLASTIC)

Unit: mm


PACKAGE STRUCTURE


SONY CODE	SOP-8P-L01
EIAJ CODE	SOP008-P-0300
JEDEC CODE	


PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	42/COPPER ALLOY
PACKAGE MASS	0.1g

CXL5507P

8PIN DIP (PLASTIC)

PACKAGE STRUCTURE

SONY CODE	DIP-8P-01
EIAJ CODE	DIP008-P-0300
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	COPPER ALLOY
PACKAGE MASS	0.5g