SONY CXP5056/CXP5058

CMOS 4-bit 1 Chip Microcomputer

Description

CXP5056/CXP5058 is a CMOS 4-bit microcomputer which consists of 4-bit CPU, ROM, RAM, I/O port, 8-bit timer, 8-bit timer/counter, 18-bit time base timer, 8-bit serial I/O, vector interruption, power on reset function, fluorescent display tube controller/driver, D/A conversion PWM output port, a remote control reception circuit, 3-bit A/D converters, a 32kHz timer/event counter and a power supply current detection reset function. They are integrated into a single chip with the standby function, etc. which are to be operated at a low power consumption.

Features

• Instruction cycle 3.8 µs/4.19MHz

1.9 μs∕4.19MHz

(High speed version)

- ROM capacity 8,192 × 8 bits (CXP5058)
 - 6,144 × 8 bits (CXP5056)
- RAM capacity 384 × 4 bits (Including stack and display area)
- 43 general purpose I/O ports
- Fluorescent display tube controller/driver
 - (Ables to display maximum 256 segments)
 - 1 to 16 digits dynamic scan display
 - Page mode/variable mode
 - Dimmer function
 - High tension proof output (40V)
 - Selection possible for incorporating pull-down resistance (mask option)
- 14-bit PWM output for D/A conversion
- Remote control receiving circuit
- 3-bit A/D converter (8 channels per circuit)
- 32kHz timer/event counter
- 8-bit/4-bit variable serial I/O
- 8-bit timer, 8-bit timer/event counter and 18-bit time base timer, independently controlled
- Arithmetic and logical operations possible between the entire RAM area, I/O area and the accumulator by means of memory mapped I/O
- Reference to the entire ROM area is possible with the table look-up instruction
- 2 kinds of power down modes of sleep and stop
- Power on reset circuit (mask option)
- Provided with 80 pin plastic QFP
- Provided with 80 pin piggyback QFP (CXP5050)

Structure

Silicon gate CMOS IC

SONY reserves the right to change products and specifications without notice. This information does not convey any ficense under patent rights of SONY corporation or others.

E89437 - ST

SONY

CXP5056/CXP5058

Block Diagram

SONY

CXP5056/CXP5058

Pin Configuration Diagram (Top View)

Note) Do not make any connections to NC pins.

SONY₀

CXP5056/CXP5058

 $V_{SS} = 0V$

Absolute Maximum Ratings

Ta = -20 °C to +75 °C, $V_{SS} = 0V$

ltem	Symbol	Rating	Unit	Remarks
Power supply voltage	VDD	-0.3 to $+7.0$	V	
Input voltage	Vin	-0.3 to +7.0*1	V	
Output voltage	Vout	-0.3 to +7.0*1	V	
Display output voltage	Vod	$V_{DD} - 40$ to $V_{DD} + 0.3$	v	As P channel transistor is open drain, Vod voltage is determined as standard.
	Іон	- 5	mA	Other than display output pins**: per pin
High level output current	Іодн1	- 15	mA	Display output S0 to S15 : per pin
	Іодн2	- 35	mA	Display output T0 to T7, T8/ S23 to T15/S16: per pin
High level total output current	Σ Іон	- 40	mA	Total of other than display output pins
	Σ Ιοση	- 100	mΑ	Total of display output pins
	loL	15	mΑ	Port 1 pin
Low level output current	lorc	20	mA	High current port pin*3
Low level total output current	ΣloL	100	mA	Entire pin total
Operating temperature	Topr	- 20 to + 75	°C	
Storage temperature	Tstg	- 55 to + 150	°C	
Allowable power dissipation	P٥	600	mW	QFP

- Note) Usage exceeding absolute maximum ratings may permanently impair the LSI. Normal operation should better take place under the recommended operation conditions. Exceeding those conditions may adversely affect the reliability of the LSI.
- *1) VIN and VOUT should not exceed VDD + 0.3V.
- *2) Specifies the output current of the general purpose I/O port PA to PF, PI, SO, SC, PYO and PY1.
- *3) The high current operation transistors are the N-CH transistors of the PC and PD ports.

Recommended Operating Condition

ltem	Symbol	Min.	Max.	Unit	Remarks
		4.5	5.5	V	Guaranteed range during operation
Power supply voltage	VDD	2.5	5.5 V		Guaranteed data hold operation range during STOP
	ViH	0.7Vdd	Vdd	V	
High level input voltage	Vills	0.8VDD	VDD	V	Hysteresis input*1
	VIHEX	V _{DD} -0.4	V _{DD} +0.3	V	EXTAL pin*2
	VIL	0	0.3V _{DD}	V	
Low level input voltage	VILS	0	0.2V _{DD}	V	Hysteresis input*1
	VILEX	- 0.3	0.4	V	EXTAL pin*2
Operating temperature	Topr	- 20	+ 75	°C	

*1) The TEX pin when the counter mode is selected by each of INT, PX0, PX2, PY2, PY3, RST

pins and mask option.

*2) Specified only during external clock input.

SONY.

Electrical Characteristics

ltem	Symbol	Pin	Condition	Min.	Тур.	Max.	Uni
High level		PA to PF, PI	$V_{DD} = 4.5V, I_{OH} = -0.5mA$	4.0			V
output voltage	Voн	PX0, PX1	$V_{DD} = 4.5V, I_{OH} = -1.0mA$	3.5			V
	T	PY0, PY1	$V_{DD} = 4.5V$, $I_{OL} = 1.8mA$			0.4	V
Low level output voltage	Vol	RST (Vo∟ only)	$V_{DD} = 4.5V$, $I_{OL} = 3.6mA$			0.6	V
output vontage		PC, PD	$V_{DD} = 4.5V$, $I_{0L} = 12mA$			1.5	V
· · · · · · · · · · · · · · · · · · ·	Іне		$V_{DD} = 5.5V, V_{H} = 5.5V$	0.5		40	μA
	lile	EXTAL	$V_{DD} = 5.5V, V_{IL} = 0.4V$	- 0.5		- 40	μA
Input current	Лінт	TEX*3	$V_{DD} = 5.5V, V_{IH} = 5.5V$	0.1		10	μA
	LILT	TEX		- 0.1		- 10	μA
	lilr	RST *2	$V_{DD} = 5.5 V, V_{IL} = 0.4 V$	- 1.5		- 400	μA
High impedance I/O leakage current	lız	PA to PF, PI PX0 to PX2, PY2, PY3, INT, RST * ² , TEX* ³	$V_{DD} = 5.5V$ $V_1 = 0, 5.5V$			± 10	μА
		S0 to S15		- 7			m/
Display output current	Іон	S16/T15 to S23 /T8, T0 to T7	$V_{DD} = 4.5V$ $V_{OH} = V_{DD} - 2.5V$	- 18			m
Open drain output leakage current (P-CH Tr OFF in state)	ILOL	S0 to S15, S16/ T15 to S23/T8, T0 to T7	$V_{DD} = 5.5V$ $V_{OL} = V_{DD} - 35V$			- 20	μ/
Pull-down resistance*1	R∟	S0 to S15, S16/ T15 to S23/T8, T0 to T7	$V_{DD} = 5V$ $V_{FDP} = V_{DD} - 35V$	60	100	270	k۵
lop			Crystal oscillation (C1 = C2 = 22pF) of $V_{DD} = 5.5V$, 4.19MHz entire output pins open		5 (7)**	15 (20)**	m
	IDDSP		SLEEP mode		3 (5)*⁴	9 (12)**	mA
Supply current		Vod	STOP mode		30	200	
			VDD=3V, 32kHz with T/C		30	200	μA
	Ισος		$V_{DD} = 5.5V$, 32kHz without T/C (For mask option select counter, Pin is fixed.)			10	μ
Input capacity	Cin	PA to PF, PI, PX, PY2, PY3, EXTAL, TEX, INT, RST	Clock 1MHz OV other than the measured pins		10	20	pf

CXP5056/CXP5058

	\mathbf{S}	Ο	N	Y
--	--------------	---	---	---

CXP5056/C	KP5058
-----------	--------

- *1) In case the incorporated pull-down resistance has been selected with mask option.
- *2) RST pin specifies the input current when the pull-up resistance is selected, and specifies leakage current when nonresistance is selected.
- *3) The TEX pin specifies the input current when the 32kHz oscillation is selected by the mask option, and specifies the leak current when the counter mode is specified.
- *4) Specifies the power supply current of the high speed version.

AC Characteristics

(1) Clock timing

 $Ta = -20^{\circ}C \text{ to } + 75^{\circ}C, V_{DD} = 4.5V \text{ to } 5.5V, V_{SS} = 0V$

Item	Symbol	Pin	Condition	Min.	Max.	Unit
System clock frequency	fc	XTAL EXTAL	Fig. 1, Fig. 2	1	5	MHz
System clock input pulse width	txL txн	EVTAL	Fig. 1, Fig. 2 (External clock drive)	90		ns
System clock input rising and falling times	tcr tcr	ENTAL	(External clock drive)		200	ns
Event count clock input pulse width	tel teн	ĒĊ	Fig. 3	tsys*1 +0.05		μs
Event count clock input rising and falling times	ter ter	ĒĊ	Fig. 3		20	ms
Event count input clock input pulse width	tтL tтн	TEX*2	Fig. 3	10		μs
Event count input clock rising and falling times	ttr ttr	TEX*2	Fig. 3		20	ms

*1) tsys in the standard version is tsys = 16/fc

tsys in the high speed version is tsys = 8/fc

*2) Specified when the counter mode is selected by the mask option.

Note) When adjusting the frequency accurately, there may be cases in which they may differ from Fig. 2.

Fig. 1 Clock timing

SONY

CXP5056/CXP5058

Fig. 3 Event count clock timing

(2) Serial transfer	$Ta = -20$ °C to $+75$ °C, $V_{DD} = 4.5V$ to 5.5V,					
Item	Symbol	Pin	Condition	Min.	Max.	Unit
Serial transfer clock (SC) cycle time		SC	Input mode	tsys/4 +1.42		μs
	tkcy	30	Output mode	2tsys		μs
Serial transfer clock (\overline{SC}) high and low level widths	tкн	SC	Input mode	tsys/8+0.7		μs
	tĸ∟	30	Output mode	tsys - 0.1		μs
Serial data input setup time	•	<u></u>	SC input mode	0.1		μs
(against SC ↑)	tsik	SI	SC output mode	0.2		μs
Serial data input hold time		<u>cı</u>	SC input mode	tsys/8+0.5		μs
(against SC ↑)	tksi	SI	SC output mode	0.1		μs
Data delay time from SC falling	tkso	SO			tsys/8+0.5	μs

Note 1) tsys in the standard version is tsys = 16/fc

tsys in the high speed version is tsys = 8/fc

2) The Load of data output delay is 50pF + 1TTL

CXP5056/CXP5058

Fig. 4 Serial transfer timing

(3) A/D converter		Ta = - 2	$20^{\circ}C$ to $+75^{\circ}C$, $V_{ss} = 0V$	
Analog input voltage	Pin	Condition	Digital conversion value	
0.0 to 0.33V			000	
0.82 to 1.29V	AD0 to AD7		001	
1.78 to 2.21V			010	
2.69 to 3.06V		$V_{DD} = 5V$	011	
3.56 to 4.06V				100
4.62 to 5.0V			101	

Note) The digital conversion value are the values when B5_H address of the RAM file 1 in the program are read.

SONY®

CXP5056/CXP5058

ltem	Symbol	Pin	Condition	Min.	Тур.	Max.	Unit
Power supply voltage detection reset function of operation voltage range	Vlpop	VDD	Voltage range allowing system operation	2.5		5.5	v
Power supply voltage drop detection function	VPOP	Vod	When V _{REF} pin voltage is 3.3V Flag set when voltage drops System reset when voltage rises	3.8	4.0	4.2	v

(4) Power Supply Voltage Detection Reset Function $Ta = -20^{\circ}C$ to $+75^{\circ}C$, Vss = 0V

The graph in Fig. 5 shows the relationship between the power supply voltage V_{DD} and reference voltage V_{REF} of the power supply voltage detection reset function.

Note 1) The graph in Fig. 5 serves as guide to the function operation area obtained using average devices.

Individual adjustment is needed when Zener diodes, etc., are connected to the VREF pin.

2) At the rising edge of the power supply, the reset function is activated below 4.5V. As there is no oscillation stabilization time for resets by the power supply voltage reset function, it is necessary that the voltage of the power supply rises to above 4.5V immediately (approx. 30 µs). Ample consideration is required for the oscillation stabilization time as it varies according to the oscillation element.

(In general, time required for stabilization from the beginning of oscillation is shorter for ceramic oscillators than for crystal oscillators.)

Fig. 5 Power supply voltage detection reset function chart

(5) Others	
------------	--

Ta = -20 °C to +75 °C, $V_{DD} = 4.5V$ to 5.5V, $V_{SS} = 0V$

ltem	Symbol	Pin	Condition	Min.	Max.	Unit
External interruption high and low level widths	tiin, tiiL	INT	During edge detection mode	tsys + 0.05		μs
Reset input low level width	trsl	RST		2tsys		μs
Wake-up input high level width			STOP mode	500		ns
	twph	WP	SLEEP mode	tsys + 0.05		μs

Note) tsys in the standard version is tsys = 16/fc

tsys in the high speed version is tsys = 8/fc

CXP5056/CXP5058

Fig. 8 Wake-up input timing

Power on reset *		Ta = -20	$Ta = -20^{\circ}C to + 75^{\circ}C, V_{SS} = 0V$				
Item	Symbol	Pin	Condition	Min.	Max.	Unit	
Power supply rising time	tR		Power on reset	0.05	50	ms	
Power supply cut-off time	toff	VDD	Repetitive power on reset	1		ms	

 Power supply cut-off time
 torr
 Repetitive power

 * Specifies only when power on reset function is selected.

The power supply should rise smoothly.

Fig. 9 Power on reset

- 10 -

SONY.

CXP5056/CXP5058

.

Notes on Application

See Fig. 10, Additive capacity calculation chart, when using the crystal oscillator and select the appropriate capacity.

Fig. 10 Crystal oscillation circuit additive capacity calculation chart

Note) The above chart shows a range in which the average quartz resonator has a relatively fast oscillation rising edge and stable characteristics. The capacity should be selected to correspond to the appropriate constant for each quartz resonator, should the frequency of the quartz resonator be accurately adjusted.

SONY®

CXP5056/CXP5058

Fig. 11 shows recommended circuits and oscillators.

Use the trimmer capacitor to C1, in the case of accurate adjustment of the oscillation frequency.

1. Main clock

4.19MHz

Ceramic resonator

Manufacturer	Model	Frequency range(MHz)	C1 (pF)	C2(pF)	$Rd(\Omega)$
MURATA MFG	RATA MFG CSA4.19MG040	100	100		
CO., LTD.	CSA4.19MGW040	4.19	built in	built in	

Crystal	oscillator

Crystal Oscillator					
Manufacturer	Model	Frequency range(MHz)	C1(pF)	C2(pF)	Rd(Ω)
CITIZEN WATCH CO., LTD.	CSA309		10 (20 trimmer)	10	
NIHON DEMPA KOGYOCO., LTD.	AT-51	4.19	15 (20 trimmer)	15	6.8k
KINSEKI LTD.	HC-49/U-S		22 (20 trimmer)	22	3.3k

2. 32kHz Timer/Counter

	Manufacturer	Model	Frequency range(kHz)	C1 (pF)	C2(pF)	Rd(Ω)
TEX TX	CITIZEN WATCH CO., LTD.	CFS-308		18 (20 trimmer)	18	
	NIHON DEMPA KOGYOCO., LTD.	MX-38T		22 (20 trimmer)	22	470k
	KINSEKI LTD.	P3		22 (20 trimmer)	22	3 .3k

About the details of oscillators, please inquire the makers or the agencies.

Fig. 11 Recommended oscillation circuit

When using the A/D converter as the key input, it is recommended that the circuit structure shown in Fig. 12 be used.

Fig. 12 Recommended example of key circuit by A/D converter

— 12 —