

CY23FS08

Failsafe[™] 2.5 V/3.3 V Zero Delay Buffer

Features

- Internal DCXO for continuous glitch-free operation
- Zero input-output propagation delay
- 100 ps typical output cycle-to-cycle jitter
- 110 ps typical output-output skew
- 1 MHz to 200 MHz reference input
- Supports industry standard input crystals
- 200 MHz (commercial), 166 MHz (industrial) outputs
- 5 V-tolerant inputs
- Phase-locked loop (PLL) bypass mode
- Dual reference inputs
- 28-pin SSOP
- Split 2.5 V or 3.3 V output power supplies
- 3.3 V core power supply
- Industrial temperature available

Logic Block Diagram

Functional Description

The CY23FS08 is a FailSafe[™] Zero Delay Buffer with two reference clock inputs and eight phase-aligned outputs. The device provides an optimum solution for applications where continuous operation is required in the event of a primary clock failure.

Continuous, glitch-free operation is achieved by using a DCXO, which serves as a redundant clock source in the event of a reference clock failure by maintaining the last frequency and phase information of the reference clock.

The unique feature of the CY23FS08 is that the DCXO is in fact the primary clocking source, which is synchronized (phase-aligned) to the external reference clock. When this external clock is restored, the DCXO automatically resynchronizes to the external clock.

The frequency of the crystal connected to the DCXO, must be chosen to be an integer factor of the frequency of the reference clock. This factor is set by four select lines: S[4:1]. see Table 2. The CY23FS08 has three split power supplies; one for core, another for Bank A outputs, and the third for Bank B outputs. Each output power supply, except VDDC can be connected to either 2.5 V or 3.3 V. VDDC is the power supply pin for internal circuits and must be connected to 3.3 V.

•

Contents

Features	1
Functional Description	1
Logic Block Diagram	1
Contents	2
Pinouts	3
FailSafe Function	4
XTAL Selection Criteria and Application Example .	8
Absolute Maximum Conditions	10
Recommended Pullable Crystal Specifications	10
Operating Conditions	10

DC Electrical Characteristics	
Switching Characteristics	
Ordering Information	
Package Diagram	12
Document History Page	13
Sales, Solutions, and Legal Information	14
Worldwide Sales and Design Support	14
Products	14
PSoC Solutions	14

Pinouts

Figure 1. Pin Configuration

Table 1. Pin Definitions

Pin Number	Pin Name	Description
1,2	REF1,REF2	Reference clock inputs. ^[4] 5 V tolerant.
4,5,10,11	CLKB[1:4]	Bank B clock outputs. ^[1, 2]
25,24,19,18	CLKA[1:4]	Bank A clock outputs. ^[1, 2]
27	FBK	Feedback input to the PLL. ^[1]
23,6,7,22	S[1:4]	Frequency select pins/PLL and DCXO bypass. ^[3]
14	XIN	Reference crystal input.
15	XOUT	Reference crystal output.
16	FAIL#/SAFE	Valid reference indicator. A high level indicates a valid reference input.
13	VDDC	3.3 V power supply for the internal circuitry.
8,12	VDDB	2.5 V or 3.3 V power supply for Bank B outputs.
3,9	VSSB	Ground.
17,21	VDDA	2.5 V or 3.3 V power supply for Bank A outputs.
20,26	VSSA	Ground.
28	REFSEL	Reference select . Selects the active reference clock from either REF1 or REF2. When REFSEL = 1, REF1 is selected. When REFSEL = 0, REF2 is selected.

Table 2. Configuration Table

S[4:1]	XTAL	(MHz)	REF(REF(MHz)		(MHz)	REF:OUT	REF:XTAL	Out:XTAL Ratio
5[4.1]	Min	Max	Min	Max	Min	Max	Ratio	Ratio	
0000				PLL and DCXO Bypass mode					
1000	8.33	30	16.67	60.00	8.33	30.00	÷2	2	1
1110	9.50	30	57.00	180.00	28.50	90.00	÷2	6	3

Notes

For normal operation, connect either one of the eight clock outputs to the FBK input.
 Weak pull downs on all CLK outputs.

Weak pull downs on these inputs.
 Weak pull downs on these inputs.

Q[4:4]	XTAL (MHz)		REF	(MHz)	OUT	(MHz)	REF:OUT	REF:XTAL	Out:XTAL Ratio
S[4:1]	Min	Max	Min	Max	Min	Max	Ratio	Ratio	
0101	8.50	30	6.80	24.00	1.70	6.00	÷4	4/5	1/5
1011	8.33	30	25.00	90.00	6.25	22.50	÷4	3	3/4
0011	8.33	30	2.78	10.00	2.78	10.00	×1	1/3	1/3
1001	8.33	30	8.33	30.00	8.33	30.00	×1	1	1
1111	8.00	25	32.00	100.00	32.00	100.00	×1	4	4
1100	8.00	25	64.00	200.00	64.00	200.00	×1	8	8
0001	8.33	30	1.04	3.75	2.08	7.50	×2	1/8	1/4
0110	8.33	30	4.17	15.00	8.33	30.00	×2	1/2	1
1101	8.33	30	16.67	60.00	33.33	120.00	×2	2	4
0100	8.33	30	4.17	15.00	16.67	60.00	×4	1/2	2
1010	8.33	30	12.50	45.00	50.00	180.00	×4	3/2	6
0010	8.33	30	1.39	5.00	11.11	40.00	×8	1/6	4/3
0111	8.33	30	6.25	22.50	50.00	180.00	×8	3/4	6

Table 2. Configuration Table (continued)

FailSafe Function

The CY23FS08 is targeted at clock distribution applications that requires or may require continued operation if the main reference clock fails. Existing approaches to this requirement have used multiple reference clocks with either internal or external methods to switch between references. The problem with this technique is that it leads to interruptions (or glitches) when transitioning from one reference to another, often requiring complex external circuitry or software to maintain system stability. The technique implemented in this design completely eliminates any switching of references to the PLL, greatly simplifying system design.

The CY23FS08 PLL is driven by the crystal oscillator, which is phase-aligned to an external reference clock so that the output of the device is effectively phase-aligned to reference via the external feedback loop. This is accomplished by using a digitally controlled capacitor array to pull the crystal frequency over an approximate range of ±300 ppm from its nominal frequency.

In this mode, if the reference frequency fails (that is, stops or disappears), the DCXO maintains its last setting and a flag signal (FAIL#/SAFE) is set to indicate failure of the reference clock.

The CY23FS08 provides four select bits, S1 through S4 to control the reference to crystal frequency ratio. The DCXO is internally tuned to the phase and frequency of the external reference only when the reference frequency divided by this ratio is within the DCXO capture range. If the frequency is out of range, a flag is set on the FAIL#/SAFE pin notifying the system that the selected reference is not valid. If the reference moves in range, then the flag is cleared, indicating to the system that the selected reference is valid.

Figure 2. Fail#/Safe Timing for Input Reference Failing Catastrophically

Figure 3. Fail#/Safe Timing Formula

$$\mathbf{t}_{\text{FSL}(\text{max})} = 2 \left(t_{\text{REF}} \mathbf{x} \mathbf{n} \right) + 25 \text{ns}$$
$$\mathbf{n} = \frac{F_{\text{REF}}}{F_{\text{XTAL}}} = 4 \text{ (in above example)}$$
$$\mathbf{t}_{\text{FSH}(\text{min})} = 12 \left(t_{\text{REF}} \mathbf{x} \mathbf{n} \right) + 25 \text{ns}$$

Table 3. Failsafe Timing Table

Parameter	Description	Conditions	Min	Max	Unit
t _{FSL}	Fail#/Safe Assert Delay	Measured at 80% to 20%, Load = 15 pF		See Figure 3	ns
t _{FSH}	Fail#/Safe Deassert Delay	Measured at 80% to 20%, Load = 15 pF	See Figure 3		ns

Figure 5. FailSafe Reference Switching Behavior

Failsafe typical frequency settling time

Initial valid Ref1 = 20 MHz +100 ppm, then switching to REF2 = 20 MHz

Because of the DCXO architecture, the CY23FS08 has a much lower bandwidth than a typical PLL-based clock generator. This is shown in Figure 6. This low bandwidth makes the CY23FS08 also useful as a jitter attenuator. The loop bandwidth curve is also known as the jitter transfer curve.

Figure 9. Output Slew Rate

Figure 10. Output to Output Skew and Intrabank Skew

XTAL Selection Criteria and Application Example

Selecting the appropriate XTAL ensures the FailSafe device is able to span an appropriate frequency of operation. Also, the XTAL parameters determine the holdover frequency stability. Critical parameters are given here. Cypress recommends that you choose:

- Low C0/C1 ratio (240 or less) so that the XTAL has enough range of pullability.
- Low temperature frequency variation
- Low manufacturing frequency tolerance

C0 is the XTAL shunt capacitance (3 pF to 7 pF typ).

C1 is the XTAL motional capacitance (10 fF to 30 fF typ).

The capacitive load as "seen" by the XTAL is across its terminals. It is named C_{LOADMIN} (for minimum value), and C_{LOADMAX} (for maximum value).These are used for calculating the pull range.

Note that the C_{LOAD} range "center" is approximately 20 pF, but we may not want a XTAL calibrated to that load. This is because the pullability is not linear, as represented in the equation below. Plotting the pullability of the XTAL shows this expected behavior as shown in Figure 13. In this example, specifying a XTAL calibrated to 14 pF load provides a balanced ppm pullability range around the nominal frequency.

Low aging

Example:

C_{LOADMIN} = (12 pF IC input cap + 0 pF pulling cap + 6 pF trace cap on board) / 2 = 9 pF

CLOADMAX = (12 pF IC input cap + 48 pF pulling cap + 6 pF trace cap on board) / 2 = 33 pF

Pull Range = $(fC_{LOADMIN} - fC_{LOADMAX}) / fC_{LOADMIN} = (C1 / 2) * [(1 / (C0 + C_{LOADMIN})) - (1 / (C0 + C_{LOADMAX}))]$ Pull Range in ppm = $(C1 / 2) * [(1 / (C0 + C_{LOADMIN})) - (1 / (C0 + C_{LOADMAX}))] * 10^{6}$

Figure 13. Frequency vs. C_{LOAD} Behavior for Example XTAL

Table 4.	Pullability Range from XTAL with Different C0/C1
Ratio	

C0/C1 Ratio	C _{LOADMIN}	C _{LOADMAX}	Pulla Rai	bility nge
200	8	32	-385	333
300	8	32	-256	222
400	8	32	-192	166

Calculated value of the pullability range for the XTAL with C0/C1 ratio of 200, 300, and 400 are shown in Table 4. For this calculation $C_{\text{LOADMIN}} = 8 \text{ pF}$ and $C_{\text{LOADMAX}} = 32 \text{ pF}$ is used. Using a XTAL that has a nominal frequency specified at load capacitance of 14 pF, almost symmetrical pullability range is obtained.

Next, it is important to calculate the pullability range including error tolerances. This is the **capture range** of the input reference frequency that the FailSafe device and XTAL combination can reliably span.

Calculating the **capture range** involves subtracting error tolerances as follows:

Parameter	f error (ppm)
Manufacturing frequency tolerance	15
Temperature stability	30
Aging	
Board/trace variation	5
Total	53
Example: Capture Range for XTAL with C0	/C1 Ratio of 200

Negative Capture Range= –385 ppm + 53 ppm = –332 ppm

Positive Capture Range = 333 ppm - 53 ppm = +280 ppm

It is important to note that the XTAL with lower C0/C1 ratio has wider **pullability/capture range** as compared to the higher C0/C1 ratio. This helps to select the appropriate XTAL for use in the FailSafe application.

Absolute Maximum Conditions

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Parameter	Description	Condition	Min	Max	Unit
V _{DD}	Supply Voltage		-0.5	-0.5 4.6	
V _{IN}	Input Voltage	Relative to V _{SS}	-0.5	V _{DD} + 0.5	VDC
Τ _S	Temperature, Storage	Non Functional	-65	150	°C
TJ	Temperature, Junction	Functional	-	125	°C
ESD _{HBM}	ESD Protection (Human Body Model)	MIL-STD-883, Method 3015	2000	-	V
Ø _{JC}	Dissipation, Junction to Case	Mil-Spec 883E Method 1012.1	36	36.17	
Ø _{JA}	Dissipation, Junction to Ambient	JEDEC (JESD 51)	100.6		°C/W
UL-94	Flammability Rating	At 1/8 in.	V–0		
MSL	Moisture Sensitivity Level			1	

Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.

Recommended Pullable Crystal Specifications^[5]

Parameter	Name	Comments	Min	Тур	Max	Unit
F _{NOM}	Nominal crystal frequency	Parallel resonance, fundamental mode, AT cut	8.00	-	30.00	MHz
C _{LNOM}	Nominal load capacitance		-	14	-	pF
R ₁	Equivalent series resistance (ESR)	Fundamental mode	-	-	25	Ω
R ₃ /R ₁	Ratio of third overtone mode ESR to fundamental mode ESR	Ratio used because typical R ₁ values are much less than the maximum spec	3	-	-	
DL	Crystal drive level	No external series resistor assumed	-	0.5	2	mW
F _{3SEPLI}	Third overtone separation from 3*F _{NOM}	High side	300	-	-	ppm
F _{3SEPLO}	Third overtone separation from 3*F _{NOM}	Low side	-	-	-150	ppm
C0	Crystal shunt capacitance		-	-	7	pF
C0/C1	Ratio of shunt to motional capacitance		180	_	250	
C1	Crystal motional capacitance		14.4	18	21.6	fF

Operating Conditions

Parameter	Description	Min	Max	Unit
V _{DDC}	3.3 V Supply Voltage	3.135	3.465	V
V _{DDA,}	2.5 V Supply Voltage Range	2.375	2.625	V
V _{DDB}	3.3 V Supply Voltage Range	3.135	3.465	V
T _A	Ambient Operating Temperature, Commercial	0	70	°C
	Ambient Operating Temperature, Industrial	-40	85	°C
CL	Output Load Capacitance (Fout <a> 100 MHz)	-	30	pF
	Output Load Capacitance (Fout > 100 MHz)	-	15	pF
C _{IN}	Input Capacitance (except XIN)	-	7	pF
C _{XIN}	Crystal Input Capacitance (all internal caps off)	10	13	pF
t _{PU}	Power up time for all VDDs to reach minimum specified voltage (power ramps must be monotonic)	0.05	500	ms

Note 5. Ecliptek crystals ECX-5788-13.500M, ECX-5807-19.440M, ECX-5872-19.53125M, ECX-6362-18.432M, ECX-5808-27.000M, ECX-5884-17.664M, ECX-5883-16.384M, ECX-5882-19.200M, ECX-5880-24.576M meet these specifications.

DC Electrical Characteristics

Parameter	Description	Description Test Conditions		Тур	Max	Unit
V _{IL}	Input Low Voltage	CMOS Levels, 30% of V _{DD}	-	_	$0.3 \times V_{DD}$	V
V _{IH}	Input High Voltage	CMOS Levels, 70% of V _{DD}	$0.7 \times V_{DD}$	-	-	V
IIL	Input Low Current	V _{IN} = V _{SS} (100k pull up only)		-	50	μA
I _{IH}	Input High Current	V _{IN} = V _{DD} (100k pull down only)	-	-	50	μA
I _{OL}	Output Low Current	V _{OL} = 0.5 V, V _{DD} = 2.5 V	-	18	-	mA
		V _{OL} = 0.5 V, V _{DD} = 3.3 V	-	20	-	mA
I _{ОН}	Output High Current	$V_{OH} = V_{DD} - 0.5 \text{ V}, V_{DD} = 2.5 \text{ V}$	-	18	-	mA
		$V_{OH} = V_{DD} - 0.5 \text{ V}, V_{DD} = 3.3 \text{ V}$	-	20	-	mA
I _{DDQ}	Quiescent Current	All Inputs grounded, PLL and DCXO in bypass mode, Reference Input = 0	-	_	250	μA

Switching Characteristics

Parameter ^[7]	Description	Test Conditions	Min	Тур	Max	Unit
f _{REF}	Reference Frequency	Commercial Grade	1.04	-	200	MHz
		Industrial Grade	1.04	-	166.7	MHz
f _{OUT}	Output Frequency	15 pF Load, Commercial Grade	1.70	-	200	MHz
		15 pF Load, Industrial Grade	1.70	-	166.7	MHz
f _{XIN}	DCXO Frequency		8.0	-	30	MHz
t _{DC}	Duty Cycle	Measured at V _{DD} /2	47	-	53	%
t _{SR(I)}	Input Slew Rate	Measured on REF1 Input, 30% to 70% of V _{DD}	0.5	-	4.0	V/ns
t _{SR(O)}	Output Slew Rate	Measured from 20% to 80% of V_{DD} = 3.3V, 15 pF Load	0.8	-	4.0	V/ns
		Measured from 20% to 80% of V_{DD} =2.5V, 15 pF Load	0.4	-	3.0	V/ns
t _{SK(O)}	Output to Output Skew	All outputs equally loaded, measured at V _{DD} /2		110	200	ps
t _{SK(IB)}	Intrabank Skew	All outputs equally loaded, measured at V _{DD} /2		-	75	ps
t _{SK(PP)}	Part to Part Skew	Measured at V _{DD} /2		-	500	ps
t _(\phi) [6]	Static Phase Offset	Measured at V _{DD} /2		-	250	ps
t _{D(φ)} [6]	Dynamic Phase Offset	Measured at V _{DD} /2		-	500	ps
t _{J(CC)}	Cycle-to-Cycle Jitter	Load = 15 pF, f _{OUT} ≥ 6.25 MHz	-	100	200	ps
			_	18	35	ps _{RMS}
t _{LOCK}	Lock Time	At room temperature with 18.432 MHz Crystal		70	_	ms

Ordering Information

Part Number	Package Type	Product Flow
Pb-free		
CY23FS08OXI	28-pin SSOP	Industrial, –40 °C to 85 °C
CY23FS08OXIT	28-pin SSOP – Tape and Reel	Industrial, –40 °C to 85 °C
CY23FS08OXC	28-pin SSOP	Commercial, 0 °C to 70 °C
CY23FS08OXCT	28-pin SSOP – Tape and Reel	Commercial, 0 °C to 70 °C

Notes

6. The $t_{(\phi)}$ reference feedback input delay is guaranteed for a maximum 4:1 input edge ratio between the two signals as long as $t_{SR(I)}$ is maintained. 7. Parameters guaranteed by design and characterization, not 100% tested in production.

Ordering Code Definition

Package Diagram

51-85079 *D

Acronyms

Acronym	Description		
DCXO	digitally controlled crystal oscillator		
ESD	electrostatic discharge		
PLL	phase locked loop		
RMS	root mean square		
SSOP	shrunk small outline package		
XTAL	crystal		

Document Conventions

Units of Measure

Symbol	Unit of Measure	
°C	degree Celsius	
μA	micro Amperes	
mA	milli Amperes	
ms	milli seconds	
MHz	Mega Hertz	
ns	nano seconds	
pF	pico Farad	
ps	pico seconds	
ppm	parts per million	
W	Watts	
Ω	ohms	
V	Volts	

Document History Page

Document Title: CY23FS08 Failsafe™ 2.5 V/3.3 V Zero Delay Buffer Document Number: 38-07518				
Rev.	ECN No.	Submission Date	Orig. of Change	Description of Change
**	123699	04/23/03	RGL	New Data Sheet
*A	224067	See ECN	RGL/ZJX	Changed the XTAL Specifications table.
*В	276749	See ECN	RGL	Removed (T _{LOCK}) Lock Time Specification.
*C	417645	See ECN	RGL	Added Lead-free devices Added typical nos. on jitters
*D	2865396	01/25/2010	KVM	Remove figures showing dynamic response to 180° phase change to REF Add waveforms for input slew rate and intrabank skew Change "CI" to "C _{LOAD} " Absolute Maximum Conditions table: remove duplicate T _A parameter Replace crystal ECX–5806–18.432M with ECX–6362–18.432M Remove obsolete part numbers CY23FS08OI, CY23FS08OIT, CY23FS08OC and CY23FS08OCT Replace "Lead-free" with "Pb-free" Remove unreferenced footnote 9 Change package drawing title from "O28" to "SP28", updated package diagram Added Table of Contents
*E	2925613	04/30/10	KVM	Posting to external web.
*F	3130032	01/06/2011	BASH	Changed $t_{D(\phi)}$ max value from 200 to 500 and removed $t_{D(\phi)}$ Typical value in Switching Characteristics on page 11. Added Ordering Code Definition. Added Acronyms and Units of Measure on page 13.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
	cypress.com/go/plc
Memory	cypress.com/go/memory
Optical & Image Sensing	cypress.com/go/image
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2003-2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 38-07518 Rev. *F

Revised January 7, 2011

Page 15 of 15

FailSafe is a trademark of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders.