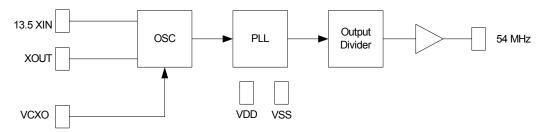


MPEG Clock Generator with VCXO

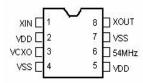
Features

- Integrated phase locked loop (PLL)
- Low jitter, high accuracy outputs
- VCXO with analog adjust
- 3.3 V operation


Table 1. Frequency Table

Benefits

- Highest performance PLL tailored for multimedia applications
- Meets critical timing requirements in complex system designs
- Application compatibility for a wide variety of designs


Part Number	Outputs	Input Frequency Range	Output Frequencies	VCXO Control Curve	Other Features
CY241V8A-11		13.5 MHz pullable crystal input per Cypress specification	One copy of 54 MHz	linear	Pinout-compatible with CY2411

Block Diagram

Pin Configuration

Figure 1. CY241V8A-11 8-pin SOIC

Pin Descriptions

Name	Pin Number	Description	
XIN	1	Reference crystal input	
VDD	2, 5	age supply	
VCXO	3	out analog control for VCXO	
VSS	4, 7	round	
54 MHz	6	MHz clock output	
XOUT	8	Reference crystal output	

Absolute Maximum Conditions

Supply voltage (V _{DD})	0.5 to +7.0 V
DC input voltage	0.5 V to V _{DD} + 0.5
Storage temperature (Non-condens	sing) -55 °C to +125 °C

Junction temperature40 °C	to +125 °C
Data retention at Tj = 125 °C	. > 10 years
Package power dissipation	350 mW
ESD (human body model) MIL-STD-883	> 2000 V

Pullable Crystal Specifications[1]

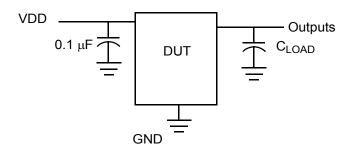
Parameter	Description	Comments	Min	Тур	Max	Unit
F _{NOM}	Nominal crystal frequency	Parallel resonance, fundamental mode, AT cut	_	13.5	-	MHz
C _{LNOM}	Nominal load capacitance		_	14	_	pF
R ₁	Equivalent series resistance (ESR)	Fundamental mode	_	-	25	Ω
R ₃ /R ₁	Ratio of third overtone mode ESR to fundamental mode ESR	Ratio used because typical R ₁ values are much less than the maximum spec	3	-	-	-
DL	Crystal drive level	No external series resistor assumed	150	-	_	μW
F _{3SEPHI}	Third overtone separation from 3 × F _{NOM}	High side	300	-	-	ppm
F_{3SEPLO} Third overtone separation from 3 × F_{NOM}		Low side	_	-	-150	ppm
C ₀	Crystal shunt capacitance		_	-	7	pF
C ₀ /C ₁	Ratio of shunt to motional capacitance		180	-	250	-
C ₁	Crystal motional capacitance		14.4	18	21.6	fF

Recommended Operating Conditions

Parameter	Description	Min	Тур	Max	Unit
VDD	Operating voltage	3.135	3.3	3.465	V
T _A	Ambient temperature	0	_	70	°C
C _{LOAD}	Max load capacitance	_	_	15	pF
t _{PU}	Power-up time for all $V_{\mbox{\scriptsize DD}}$ pins to reach minimum specified voltage (power ramps must be monotonic)	0.05	_	500	ms

DC Electrical Specifications

Parameter	Name	Description	Min	Тур	Max	Unit
I _{OH}	Output HIGH current	$V_{OH} = V_{DD} - 0.5 \text{ V}, V_{DD} = 3.3 \text{ V}$	12	24	_	mA
I _{OL}	Output LOW current	V _{OL} = 0.5 V, V _{DD} = 3.3 V	12	24	_	mA
C _{IN}	Input capacitance	Except XIN, XOUT pins	_	_	7	pF
V_{VCXO}	VCXO input range		0	-	V_{DD}	V
$f_{\Delta XO}^{[2]}$	VCXO pullability range	Low side	_	_	-115	ppm
		High side	115	-	_	ppm
I_{VDD}	Supply current		_	30	35	mA


AC Electrical Specifications (V_{DD} = 3.3 V)^[3]

Parameter ^[3]	Name	Description	Min	Тур	Max	Unit
DC	Output duty cycle	Duty cycle is defined in Figure 2 on page 3, 50% of V _{DD}	45	50	55	%
ER	Rising edge rate	Output clock edge rate, measured from 20% to 80% of V_{DD} , C_{LOAD} = 15 pF. see Figure 3 on page 3.	8.0	1.4	_	V / ns
EF	Falling edge rate	Output clock edge rate, measured from 80% to 20% of V_{DD} , C_{LOAD} = 15 pF. see Figure 3 on page 3.	8.0	1.4	_	V / ns
t ₉	Clock jitter	Peak-to-peak period jitter	_	_	100	ps
t ₁₀	PLL lock time		_	-	3	ms

^{1.} Crystals that meet this specification include: Ecliptek ECX-5788-13.500M,Siward XTL001050A-13.5-14-400, Raltron A-13.500-14-CL,PDI HA13500XFSA14XC.
2. -115/+115 ppm assumes 2.5 pF of additional board level load capacitance. This range will be shifted down with more board capacitance or shifted up with less board capacitance.
3. Not 100% tested.

Test and Measurement Setup

Voltage and Timing Definitions

Figure 2. Duty Cycle Definition

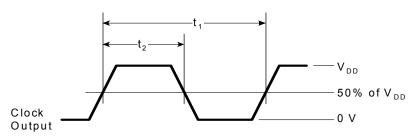
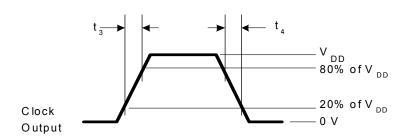
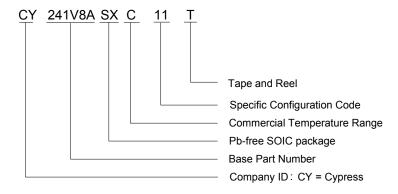
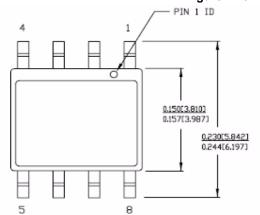



Figure 3. ER = (0.6 × V_{DD}) / t3, EF = (0.6 × V_{DD}) / t4



Ordering Information

Ordering Code	Package Name	Package Type	Operating Range	Operating Voltage	Features
CY241V8ASXC-11	S8	8-pin SOIC	Commercial	3.3 V	Linear VCXO control curve
CY241V8ASXC-11T	S8	8-pin SOIC – Tape and Reel	Commercial	3.3 V	Linear VCXO control curve


Ordering Code Definition

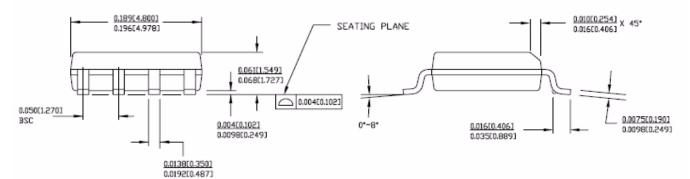

Package Drawing and Dimensions

Figure 4. 8 Pin (150 Mil) SOIC - SO8

- DIMENSIONS IN INCHES[MM] MIN. MAX.
- 2. PIN 1 ID IS OPTIONAL, ROUND ON SINGLE LEADFRAME RECTANGULAR ON MATRIX LEADFRAME
- REFERENCE JEDEC MS-012
- 4. PACKAGE WEIGHT 0.07gms

PART #				
\$08.15	STANDARD PKG.			
SZ08.15	LEAD FREE PKG.			

51-85066 *D

Document History Page

Document Title: CY241V8A-11 MPEG Clock Generator with VCXO Document Number: 38-07654								
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change				
**	214071	See ECN	RGL	New Data Sheet				
*A	220461	See ECN	RGL	Minor Change: To post on web				
*B	2896017	03/18/2010	CXQ	Inactive parts;obsolete datasheet				
*C	3000820	08/06/2010	CXQ	Reinstatement of datasheet: Pb-free devices added to Ordering Information.				

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive cypress.com/go/automotive Clocks & Buffers cypress.com/go/clocks Interface cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/plc

Memory cypress.com/go/memory
Optical & Image Sensing cypress.com/go/image
PSoC cypress.com/go/psoc
Touch Sensing cypress.com/go/touch
USB Controllers cypress.com/go/USB
Wireless/RF cypress.com/go/wireless

PSoC Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2010. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document #: 38-07654 Rev. *C Revised August 9, 2010 Page 6 of 6