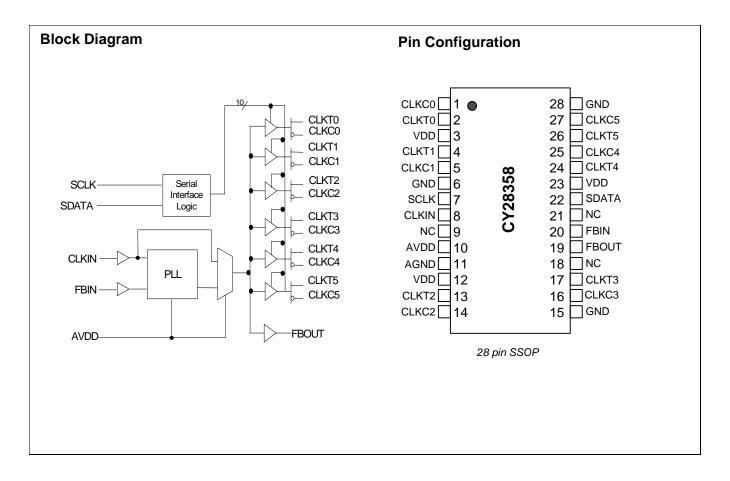


200-MHz Differential Clock Buffer/Driver

Features

- Up to 200 MHz operation
- Phase-locked loop clock distribution for Double Data Rate Synchronous DRAM applications
- Distributes one clock input to six differential outputs
- External feedback pin FBIN is used to synchronize the outputs to the clock input
- . Conforms to the DDR1 specification
- Spread Aware[™] for EMI reduction
- · 28-pin SSOP package


Description

This PLL clock buffer is designed for 2.5 VDD and 2.5 AVDD operation and differential output levels.

This device is a zero delay buffer that distributes a clock input CLKIN to six differential pairs of clock outputs (CLKT[0:5], CLKC[0:5]) and one feedback clock output FBOUT. The clock outputs are controlled by the input clock CLKIN and the feedback clock FBIN.

The two line serial bus can set each output clock pair (CLKT[0:5], CLKC[0:5]) to the Hi-Z state. When AVDD is grounded, the PLL is turned off and bypassed for test purposes.

The PLL in this device uses the input clock CLKIN and the feedback clock FBIN to provide high-performance, low-skew, low-jitter output differential clocks.

Pin Description[1]

Pin	Name	I/O	Description	Electrical Characteristics
8	CLKIN	I	Clock Input.	Input
20	FBIN	I	Feedback Clock Input. Connect to FBOUT for accessing the PLL.	Input
2,4,13,17,24,26	CLKT(0:5)	0	Clock Outputs	Differential Outputs
1,5,14,16,25,27	CLKC(0:5)	0	Clock Outputs	
19	FBOUT	0	Feedback Clock Output. Connect to FBIN for normal operation. A bypass delay capacitor at this output will control Input Reference/Output Clocks phase relationships.	
7	SCLK	I	Serial Clock Input . Clocks data at SDATA into the internal register.	Data Input for the two line serial bus
22	SDATA	I/O	Serial Data Input. Input data is clocked to the internal register to enable/disable individual outputs. This provides flexibility in power management. Data Input and Output for serial bus	
3,12,23	VDD		2.5V Power Supply for Logic	2.5V Nominal
10	AVDD		2.5V Power Supply for PLL	2.5V Nominal
6,15,28	GND		Ground	
11	AGND		Analog Ground for PLL	
9, 18, 21	NC		Not Connected	

Function Table

Inputs		Outputs			DIT	
VDDA	CLKIN	CLKT(0:5) ^[2]	CLKC(0:5) ^[2]	FBOUT	PLL	
GND	L	L	Н	L	BYPASSED/OFF	
GND	Н	Н	L	Н	BYPASSED/OFF	
2.5V	L	L	Н	L	On	
2.5V	Н	Н	L	Н	On	
2.5V	< 20 MHz	Hi-Z	Hi-Z	Hi-Z	Off	

Zero Delay Buffer

When used as a zero delay buffer the CY28358 will likely be in a nested clock tree application. For these applications the CY28358 offers a clock input as a PLL reference. The CY28358 then can lock onto the reference and translate with near zero delay to low-skew outputs. For normal operation, the external feedback input, FBIN, is connected to the feedback output, FBOUT. By connecting the feedback output to the feedback input the propagation delay through the device is eliminated. The PLL works to align the output edge with the input reference edge thus producing a near zero delay. The reference frequency affects the static phase offset of the PLL and thus the relative delay between the inputs and outputs.

When VDDA is strapped LOW, the PLL is turned off and bypassed for test purposes.

Power Management

The individual output enable/disable control of the CY28358 allows the user to implement unique power management schemes into the design. Outputs are three-stated when disabled through the two-line interface as individual bits are set low in Byte0 and Byte1 registers. The feedback output FBOUT cannot be disabled via two line serial bus. The enabling and disabling of individual outputs is done in such a manner as to eliminate the possibility of partial "runt" clocks.

Notes:

A bypass capacitor $(0.1\mu F)$ should be placed as close as possible to each positive power pin (<0.2"). If these bypass capacitors are not close to the pins their high frequency filtering characteristic will be cancelled by the lead inductance of the traces. Each output pair can be three-stated via the two line serial interface.

Serial Data Interface

To enhance the flexibility and function of the clock synthesizer, a two-signal serial interface is provided. Through the Serial Data Interface, various device functions, such as individual clock output buffers, can be individually enabled or disabled. The registers associated with the Serial Data Interface initialize to their default setting upon power-up, and therefore use of this interface is optional. Clock device register changes are normally made upon system initialization, if any are required. The interface can also be used during system operation for power management functions.

Data Protocol

The clock driver serial protocol accepts block write, and block read operations from the controller. For block write/read operation, the bytes must be accessed in sequential order from lowest to highest byte (most significant bit first) with the ability to stop after any complete byte has been transferred. The block write and block read protocol is outlined in *Table 1*. The slave receiver address is 11010010 (D2h).

Table 1. Block Read and Block Write Protocol

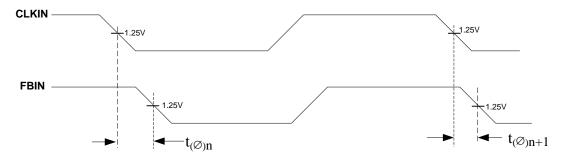
	Block Write Protocol		Block Read Protocol
Bit	Description	Bit	Description
1	Start	1	Start
2:8	Slave address – 7 bits	2:8	Slave address – 7 bits
9	Write = 0	9	Write = 0
10	Acknowledge from slave	10	Acknowledge from slave
11:18	Command Code – 8 bits '00000000' stands for block operation	11:18	Command Code – 8 bits '00000000' stands for block operation
19	Acknowledge from slave	19	Acknowledge from slave
20:27	Byte Count – 8 bits	20	Repeat start
28	Acknowledge from slave	21:27	Slave address – 7 bits
29:36	Data byte 1 – 8 bits	28	Read = 1
37	Acknowledge from slave	29	Acknowledge from slave
38:45	Data byte 2 – 8 bits	30:37	Byte count from slave – 8 bits
46	Acknowledge from slave	38	Acknowledge
		39:46	Data byte from slave – 8 bits
	Data Byte (N-1) - 8 bits	47	Acknowledge
	Acknowledge from slave	48:55	Data byte from slave – 8 bits
	Data Byte N – 8 bits	56	Acknowledge
	Acknowledge from slave		Data bytes from slave/Acknowledge
	Stop		Data byte N from slave – 8 bits
			Not Acknowledge
			Stop

Byte0: Output Register1 (1 = Enable, 0 = Disable)

Bit	@ Pup	Pin#	Description
7	1	2, 1	CLKT0, CLKC0
6	1	4, 5	CLKT1, CLKC1
5	1		Reserved
4	1		Reserved
3	1	13, 14	CLKT2, CLKC2
2	1	26, 27	CLKT5, CLKC5
1	1		Reserved
0	1	24, 25	CLKT4, CLKC4

Byte1: Output Register 2 (1 = Enable, 0 = Disable)

Bit	@Pup	Pin#	Description
7	1		Reserved
6	1	17, 16	CLKT3, CLKC3
5	0		Reserved
4	0		Reserved
3	0		Reserved
2	0		Reserved
1	0		Reserved
0	0		Reserved


Byte2: Test Register 3

Bit	@Pup	Pin#	Description
7	1		Reserved
6	1		Reserved
5	1		Reserved
4	1		Reserved
3	1		Reserved
2	1		Reserved
1	1		Reserved
0	1		Reserved

Document #: 38-07417 Rev. *A

Parameter Measurement Information

$$t_{(\varnothing)n} = \ \frac{\sum_{1}^{n = N} \ t_{(\varnothing)n}}{N} \qquad \text{(N is large number of samples)}$$

Figure 1. Static Phase Offset

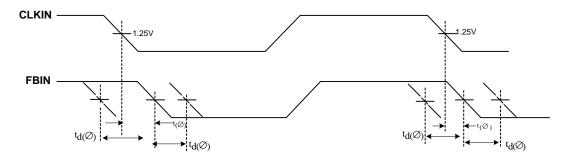
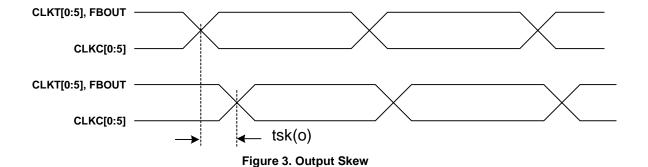



Figure 2. Dynamic Phase Offset

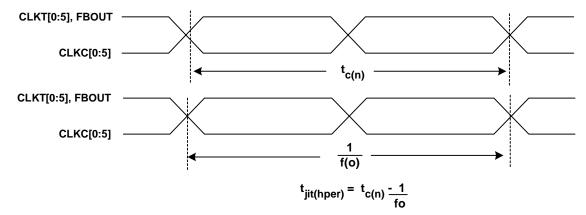


Figure 4. Period Jitter

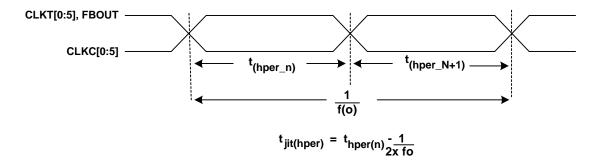


Figure 5. Half-Period Jitter

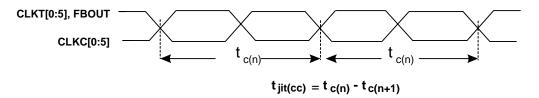


Figure 6. Cycle-to-cycle Jitter

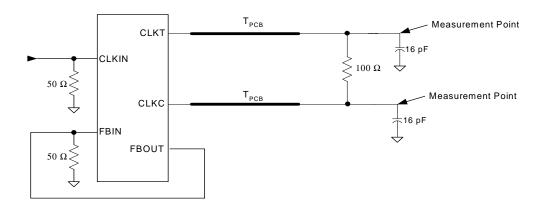


Figure 7. Differential Signal Using Direct Termination Resistor

Maximum Ratings[3]

Input Voltage Relative to V_{SS}:.....V_{SS} – 0.3V Input Voltage Relative to V_{DDQ} or A_{VDD}:.....V_{DD} + 0.3V Storage Temperature:-65°C to + 150°C Operating Temperature:0°C to +85°C Maximum Power Supply:3.5V This device contains circuitry to protect the inputs against damage due to high static voltages or electric field; however, precautions should be taken to avoid application of any voltage higher than the maximum rated voltages to this circuit. For proper operation, Vin and Vout should be constrained to the

 $V_{SS} < (V_{in} \text{ or } V_{out}) < V_{DD}$

Unused inputs must always be tied to an appropriate logic voltage level (either V_{SS} or V_{DD}).

DC Parameters^[4] $(V_{DDA} = V_{DDO} = 2.5V + 5\%, T_A = 0^{\circ}C \text{ to } +70^{\circ}C)$

Parameter Description		Conditions	Min.	Тур.	Max.	Unit
V _{IL}	Input Low Voltage	SDATA, SCLK			1.0	V
V _{IH}	Input High Voltage	SDATA, SCLK	2.2			V
V _{IL}	Input Voltage Low	CLKIN, FBIN			0.4	V
V _{IH}	Input Voltage High	CLKIN, FBIN	2.1			V
I _{IN}	Input Current	$V_{IN} = 0V$ or $V_{IN} = V_{DDQ}$, CLKIN, FBIN	-10		10	μA
I _{OL}	Output Low Current	$V_{DDQ} = 2.375V, V_{OUT} = 1.2V$	26	35		mA
I _{OH}	Output High Current	V _{DDQ} = 2.375V, V _{OUT} = 1V	-18	-32		mA
V _{OL}	Output Low Voltage	$V_{\rm DDQ}$ = 2.375V, $I_{\rm OL}$ = 12 mA			0.6	V
V _{OH}	Output High Voltage	$V_{\rm DDQ} = 2.375 \text{V}, I_{\rm OH} = -12 \text{ mA}$	1.7			V
V _{OUT}	Output Voltage Swing ^[5]		1.1		V _{DDQ} -0.4	V
V _{OC}	Output Crossing Voltage ^[6]		(V _{DDQ} /2) – 0.2	V _{DDQ} /2	$(V_{DDQ}/2) + 0.2$	V
I _{OZ}	High-Impedance Output Current	$V_O = GND \text{ or } V_O = V_{DDQ}$	-10		10	μA
I _{DDQ}	Dynamic Supply Current ^[7]	All V_{DDQ} and V_{DDI} , F_{O} = 200 MHz		235	300	mA
I _{DSTAT}	Static Supply Current				2	mA
I _{DD}	PLL Supply Current	V _{DDA} only		9	12	mA
C _{IN}	Input Pin Capacitance			4	6	pF

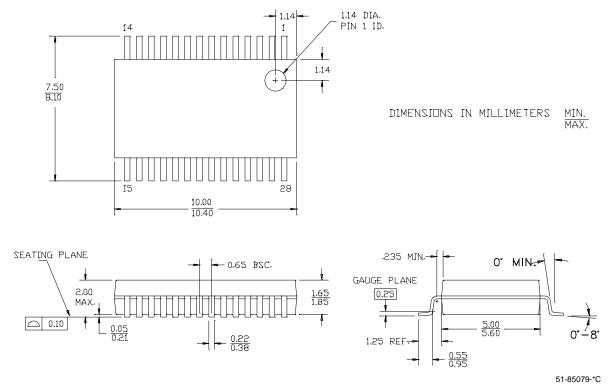
Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required. Unused inputs must be held high or low to prevent them from floating For load conditions see *Figure 7*. The value of V_{OC} is expected to be |VTR + VCP|/2. In case of each clock directly terminated by a 120Ω resistor. See *Figure 7*. All outputs switching loaded with 16pF in 60Ω environment. See *Figure 7*

AC Parameters^[8,9] ($V_{DD} = V_{DDQ} = 2.5V\pm5\%$, $T_A = 0$ °C to +70°C)

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
f _{CLK}	Operating Clock Frequency		60		200	MHz
t _{DC}	Input Clock Duty Cycle		40		60	%
t _{LOCK}	Maximum PLL lock Time				100	μs
t_R/t_F	Output Clocks Slew Rate	20% to 80% of V _{OD}	1		2.5	V/ns
t _{PZL} ,t _{PZH}	Output Enable Time ^[10] (all outputs)			3		ns
t _{PLZ} ,t _{PHZ}	Output Disable Time ^[10] (all outputs)			3		ns
t _{CCJ}	Cycle to Cycle Jitter ^[12]	f > 66 MHz	-100		100	ps
tjit(h-per)	Half-period jitter ^[12]	f > 66 MHz	-100		100	ps
t _{PLH}	Low-to-High Propagation Delay, CLKIN to CLKT[0:5]		1.5	3.5	6	ns
t _{PHL} High-to-Low Propagation Delay, CLKIN to CLKT[0:5]			1.5	3.5	6	ns
t _{SKEW}	Any Output to Any Output Skew ^[11]				100	ps
t _{PHASE}	Phase Error ^[11]		-150		150	ps
t _{PHASEJ}	Phase Error Jitter	f > 66 MHz	-50		50	ps

Notes:

Parameters are guaranteed by design and characterization. Not 100% tested in production.
 PLL is capable of meeting the specified parameters while supporting SSC synthesizers with modulation frequency between 30kHz and 33.3kHz with a down spread of –0.5%.
 Refers to transition of non-inverting outpu.t
 All differential input and output terminals are terminated with 120Ω/16pF as shown in *Figure 7*.
 Period Jitter and Half-Period Jitter specifications are separate specifications that must be met independently of each other.



Ordering Information

	Part Number	Package Type	Product Flow
	CY28358OC	28-Pin SSOP	Commercial, 0° to 70°C
CY28358OCT 28		28-Pin SSOP -Tape and Reel	Commercial, 0° to 70°C

Package Drawing and Dimensions

28-Lead (5.3 mm) Shrunk Small Outline Package O28

Spread Aware is a trademark of Cypress Semiconductor Corporation. All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

Document Title: CY28358 200-MHz Differential Clock Buffer/Driver Document #: 38-07417						
REV. ECN NO. Issue Orig. of Change Description of Change						
**	118004	09/11/02	INA	New Data Sheet		
*A	122925	12/14/02	RBI	Add power up requirements to operating condicitons information.		

Document #: 38-07417 Rev. *A