

High Speed Multi-Output PLL Clock Buffer

Features

- 10 MHz to 200 MHz output operation
- Output-to-output skews < 350 ps
- 13 LVTTL 50% duty cycle outputs capable of driving 50Ω terminated lines
- Phase-locked loop (PLL) LOCK indicator
- 3.3V LVTTL/LV differential (LVPECL) hot insertable reference inputs
- Multiply/divide ratios of (4, 6, 8, 10, 12, 16, 20):(2, 4, 6, 8, 10, 12, 16, 20)
- Operation with outputs operating at up to 10x input frequency
- Low cycle-to-cycle jitter (< ±75 ps peak-peak)
- Single 3.3V ± 10% supply
- 52-pin TQFP package

Functional Description

The CY7B9973V Low Voltage PLL Clock Buffer offers user-selectable frequency control over system clock functions. This twelve output clock driver provides the system integrator with selectable frequency ratios of 1:1, 2:1, 3:1, 3:2, 4:3, 5:1, 5:2, 5:3, 6:1 and 6:5 between outputs. An additional output is dedicated to providing feedback information to allow the internal PLL to multiply an external reference frequency by 4, 6, 8, 10, 12, 16 or 20. The completely integrated PLL reduces jitter and simplifies board layout.

The thirteen configurable outputs can each drive terminated transmission lines with impedances as low as 50Ω while delivering minimal and specified output skews at LVTTL levels.

The CY7B9973V has a flexible reference input scheme with three different hot-insertion capable inputs. These inputs allow the use of either differential LVPECL or single-ended LVTTL inputs, which can be dynamically selected to provide the reference frequency.

Logic Block Diagram

Cypress Semiconductor Corporation • Document #: 38-07430 Rev. *D

198 Champion Court • San Jose, CA 95134-1709

CA 95134-1709 • 408-943-2600 Revised October 14, 2010

Contents

Pinout Configurations	3
Pin Definitions	
Phase Frequency Detector and Filter	6
VCO, Control Logic, and Divider	6
Data Generator	6
Inv_Clk Pin Function	6
Lock Detect Output Description	
PLL Bypass Mode Description	6
Factory Test Reset	6
Safe Operating Zone	
Absolute Maximum Conditions	
Operating Range	7
DC Characteristics Over the Operating Range	

PLL Input Reference Characteristics	
Over the Operating Range	7
AC Characteristics Over the Operating Range	
AC Timing Diagrams	
Ordering Information	
Ordering Code Definitions	
Package Diagram	
Document Conventions	
Units of Measure	11
Acronyms	11
Document History Page	
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	
Products	
PSoC Solutions	

Pinout Configurations

Table 1. Divider Function Selects for Qa, Qb, Qc

fsela1	fsela0	Qa	fselb1	fselb0	Qb	fselc1	fselc0	Qc
0	0	÷4	0	0	÷4	0	0	÷2
0	1	÷6	0	1	÷6	0	1	÷4
1	0	÷8	1	0	÷8	1	0	÷6
1	1	÷12	1	1	÷10	1	1	÷8

Table 2. Divider Function Select for QFB

fselFB2	fselFB1	fselFB0	QFB
0	0	0	÷4
0	0	1	÷6
0	1	0	÷8
0	1	1	÷10
1	0	0	÷8
1	0	1	÷12
1	1	0	÷16
1	1	1	÷20

Table 3. Control Pin Function Selects

Control Pin	Logic '0'	Logic '1'
VCO_Sel	VCO/2	VCO
Ref_Sel	Controlled by TCLK_Sel	PECL
TCLK_Sel	TCLK0	TCLK1
PLL_En	Bypass PLL	Enable PLL
MR/OE	Master Reset/Output Hi-Z	Enable Outputs
Inv_Clk	Noninverted Qc2, Qc3	Inverted Qc2, Qc3

Pin Definitions

Name	Pin No.	Туре	Description
Q[a:c][0:3] QFB	50,48,46,44, 38,36,34,32, 23,21,18,16, 29	LVTTL Output	Clock Output . These outputs provide numerous divide functions determined by the fsel[a:c][0:1] and the fselFB[0:2] inputs. See Table 1 and Table 2
Ext_FB	31	LVTTL Input ^[1]	PLL Feedback Input . This input is used to connect one of the clock outputs (usually QFB) to the feedback input of the PLL.
Ref_Sel	7	LVTTL Input ^[1]	Reference Select Input . The Ref_Sel input controls the reference input to the PLL. When LOW, the input is selected by the TCLK_Sel input. When HIGH, the PECL_CLK is selected. This input has an internal pull up.
TCLK_Sel	8	LVTTL Input ^[1]	TTL Clock Select Input . The TCLK_Sel input controls which TCLK[0,1] input is used as the reference input if Ref_Sel is LOW. When TCLK_Sel is LOW TCLK0 is selected. When TCLK_Sel is HIGH TCLK1 is selected. This input has an internal pull up.
TCLK0 TCLK1	9, 10	LVTTL Input ^[1]	LVTTL Reference Inputs . These inputs provide the reference frequency for the internal PLL when selected by Ref_Sel and TCLK_Sel.
PECL_CLK PECL_CLK	12,11	LV-Diff. PECL Input	Differential Reference Inputs . This LV-Differential PECL input provides the reference frequency for the internal PLL when selected by Ref_Sel.
fsel[a:c][0:1]	43, 42, 41, 40, 20,19	LVTTL Input ^[1]	Output Divider Function Select . Each pair controls the divider function of the respective bank of outputs. See Table 1.
fselFB[0:1] fselFB2	27,26, 5	LVTTL Input ^[1]	Feedback Output Divider Function Select . These inputs control the divider function of the feedback output QFB. See Table 2.
VCO_Sel	52	LVTTL Input ^[1]	VCO Frequency Select Input. This input selects the nominal operating range of the VCO used in the PLL. When VCO_Sel is HIGH, the VCO range is 200 to 480 MHz. When VCO_Sel is LOW, the VCO range is 100 to 240 MHz.
PLL_En	6	LVTTL Input ^[1]	PLL Bypass Select . When this input is HIGH, the internal Phase Locked Loop (PLL) provides the internal clocks to operate the part. When this input is LOW, the internal PLL is bypassed and the selected reference input provides the clocks to operate the part.
FT1, FT2	3, 4	LVTTL Input ^[1]	PLL Bypass Mode Control Inputs . When PLL_En is HIGH, these inputs are ignored and may be set to any logic level or left open. These inputs have an internal pull up.
Inv_Clk	14	LVTTL Input ^[1]	Invert Mode . This input only affects the Qc bank. When this input is HIGH, Qc2 and Qc3 are inverted from the "normal" phase of Qc0 and Qc1. When this input is LOW all outputs of the Qc bank are in the "normal" phase alignment.
MR/OE	2	LVTTL Input ^[1]	Master Reset (Active LOW) and Output Enable (Active HIGH) Input . When \overline{MR} /OE is deasserted (set to HIGH), the PLL is disturbed and the outputs will be at an indeterminate frequency until it is relocked.
VCCA	13	Power	PLL Power.
VCCF	28	Power	Feedback Buffer Power.
VCCO	17, 22, 33, 37,45,49	Power	Output Buffer Power.
GNDA	1	Ground	PLL Ground.
GNDO	15, 24, 30, 35, 39, 47, 51	Ground	Output Buffer Ground.
LOCK	25	LVTTL Output	PLL Lock Indicator. When HIGH, this output indicates that the internal PLL is locked to the reference signal. When LOW, the PLL attempts to acquire lock. Note If there is no activity on the selected reference input, LOCK may not accurately reflect the state of the internal PLL. This pin drives logic, but not Thevenin terminated transmission lines. It is always active and does not go to a high impedance state. This output provides TEST MODE information when PLL_En is LOW.

Note 1. Includes internal pull up. If this pin is left unconnected, it assumes a HIGH level.

Phase Frequency Detector and Filter

These two blocks accept signals from the reference inputs (TCLK0, TCLK1, or PECL_CLK) and the FB input (Ext_FB). Correction information is then generated to control the frequency of the Voltage Controlled Oscillator (VCO). These two blocks, along with the VCO, form a (PLL) that tracks the incoming reference signal.

The CY789973V has a flexible reference input scheme. These inputs allow the use of either differential LVPECL or one of two single-ended LVTTL inputs. The reference inputs are tolerant to hot insertion and can be changed dynamically.

VCO, Control Logic, and Divider

The VCO accepts analog control inputs from the PLL filter block. The VCO_Sel control pin setting determines the nominal operational frequency range of the VCO (f_{NOM}). When VCO_Sel is HIGH, the VCO operating range is 200 to 480 MHz. For systems that need lower frequencies, VCO_Sel can be set LOW, which changes the VCO operating range to 100 to 240 MHz.

Data Generator

The Data Generator has four independent banks: three banks for clock outputs and one bank for feedback. Each clock output bank has four low-skew, high-fanout output buffers (Q[a:c][0:3]), controlled by two divide function select inputs (fsel[a:c][0:1]).

The feedback bank has one high fanout output buffer (QFB). This output is usually connected to the selected feedback input (Ext_FB). This feedback output has three divider function selects fselFB[0:2].

Inv_Clk Pin Function

The Qc bank has signal invert capability. The four outputs of the Qc bank acts as two pairs of complementary outputs when the Inv_Clk pin is driven HIGH. In complementary output mode, Qc0 and Qc1 are noninverting (in phase with the other banks), Qc2 and Qc3 are inverting outputs (inverted from the other banks). When the Inv_Clk pin is driven LOW, the outputs do not invert. Inversion of the outputs are independent of the divide functions. Therefore, clock outputs of Qc bank can be inverted and divided at the same time.

Lock Detect Output Description

The LOCK detect output indicates the lock condition of the integrated PLL. Lock detection is accomplished by comparing the phase difference between the reference and feedback inputs. An unacceptable phase error is declared when the phase difference between the two inputs is greater than about 700 ps.

When in the locked state, after four or more consecutive feedback clock cycles with phase-errors, the LOCK output is forced LOW to indicate out-of-lock state.

When in the out-of-lock state, 32 consecutive phase-errorless feedback clock cycles are required to allow the LOCK output to indicate lock condition (LOCK = HIGH).

If the feedback clock is removed after LOCK has gone HIGH, a Watchdog circuit is implemented to indicate the out-of-lock condition after a time-out period by deasserting LOCK LOW. This time-out period is based upon a divided down reference clock.

This assumes that there is activity on the selected reference input. If there is no activity on the selected reference input, then the LOCK detect pin may not accurately reflect the state of the internal PLL.

The LOCK pin is designed with an intentionally reduced output drive capability to minimize noise and power dissipation. This pin drives logic, but not Thevenin-terminated transmission lines. It is also unaffected by the MR/OE input and is always active.

PLL Bypass Mode Description

The device enters PLL bypass mode when the PLL_En is driven LOW. In factory PLL bypass mode, the device operates with its internal PLL disconnected; input signals supplied to the reference input are used in place of the PLL output. In PLL bypass mode the Ext_FB input is ignored. All functions of the device are still operational in PLL bypass mode.

Factory Test Reset

When in PLL bypass mode (PLL_En = LOW), the device can be reset to a deterministic state by driving the MR/OE input LOW. When the MR/OE input is driven LOW in PLL bypass mode, all clock outputs go to HI-Z; after the selected reference clock pin has five positive transitions, all the internal finite state machines (FSM) are set to a deterministic state. The deterministic state of the state machines depends on the configurations of the divide selects and frequency select input. All clock outputs stay in high impedance mode and all FSMs stay in the deterministic state until MR/OE is deasserted. When MR/OE is deasserted (with PLL_En still at LOW), the device reenters PLL bypass mode.

Safe Operating Zone

The device operates below its maximum allowable junction temperature ($t_J < 150^{\circ}$ C) in any configuration of multiply or divide with all outputs loaded to the data sheet maximum (with 25 pF load and 0-m/s air flow).

Absolute Maximum Conditions

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Storage Temperature40°C to +150°C
Ambient Temperature with Power Applied –40°C to +125°C
Supply Voltage to Ground Potential0.5V to +4.6V
DC Input Voltage–0.3V to V_{CC} + 0.5V

Output Current into Outputs (LOW)	40 mA
Static Discharge Voltage (per MIL-STD-883, Method 3015)	> 2000V
Latch-up Current	±200 mA

Operating Range

Range	Ambient Temperature	V _{cc}
Commercial	0°C to +70°C	3.3V ±10%

DC Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
V _{IH}	Input HIGH Voltage		2.0	_	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage		-	-	0.8	V
V _{PP}	Peak-to-Peak Input Voltage PECL_CLK		400	-	V _{cc}	mV
V _{CMR}	Common Mode Range (Crossing) PECL_CLK	Note 2	0.8	-	V _{cc}	V
V _{OH}	Output HIGH Voltage All "Q" Outputs	I _{OH} = –20 mA ^[3]	2.4	_	-	V
	Output HIGH Voltage LOCK Output	I _{OH} = –2 mA ^[3]	2.4	-	-	V
V _{OL}	Output LOW Voltage "Q" Output	I _{OL} = +20 mA	-	-	0.5	V
	Output LOW Voltage LOCK Output	I _{OL} = +2 mA	-	_	0.5	V
I _{IN}	Input Current ^[4]	All control inputs GND < V _{IN} < V _{CC}	-	-	<u>+</u> 150	μA
		PECL_CLK and TCLK[0:1] GND < V _{IN} < V _{CC}	-	-	<u>+</u> 500	μA
I	Hot Insertion Input Current	PECL_CLK and TCLK[0:1] $V_{IN} \leq 3.63V$ V_{CC} = GND	-	_	100	μA
ICCQ	Maximum Quiescent Supply Current	Sum all V _{CC} pins PLL_En=LOW reference off	-	50	150	mA
I _{CCD}	Maximum Dynamic Supply Current (Neglecting Output Load Current)	Outputs unloaded fselFB = 010 (÷8) ref = 50 MHz	_	320	400	mA
C _{IN}	Input Capacitance	Note 5	_	—	4	pF

PLL Input Reference Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Min	Max	Unit
t _{r,} t _f	TCLK Input Rise/Fall Time	Note 5	_	3.0	ns
f _{ref}	Reference Input Frequency		14	120	MHz
t _{refDC}	Reference Input Duty Cycle		25	75	%

Notes

- V_{CMR} is the measured at the point that both inputs achieve the same voltage.
 The CY7B9973V clock outputs can drive series or parallel terminated 50Ω (or 50Ω to VCC/2) transmission lines on the incident edge.
- Inputs have pull up resistors which affect input current.
 Tested initially and after any design or process changes that may affect these parameters.

AC Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
t _r	Output Rise Time	0.8 to 2.0V ^[6]	0.15	-	1.2	ns
t _f	Output Fall Time	2.0 to 0.8V ^[6]	0.15	-	1.2	ns
t _{pw}	Output Duty Cycle	f _{max} < 125 MHz ^[7, 8]	t _{CYCLE} /2 -400	t _{CYCLE} /2 <u>+</u> 200	t _{CYCLE} /2 +400	ps
		f _{max} > 125 MHz ^[7, 8]	t _{CYCLE} /2 -450	t _{CYCLE} /2 <u>+</u> 225	t _{CYCLE} /2 +450	ps
t _{pd}	Propagation Delay (Selected Reference Input Rise to Ext_FB Rise) QFB = \div 8	Notes 8, 9	-350	-	+350	ps
t _{os}	Output to Output Skew	Notes 8, 15	-	-	<u>+</u> 350	ps
f _{VCO}	VCO Lock Range		200	-	480	MHz
f _{max}	Maximum Output Frequency	Note 13	-	-	200	MHz
t _{jitter (CC)}	Cycle to Cycle Jitter (Peak-Peak), 10,000 clocks	Note 16	-	<u>+</u> 50	<u>+</u> 75	ps
t _{jitter (PER)}	Period Jitter (Peak-Peak), 10,000 clocks	Note 16	-	120	168	ps
	Period Jitter (Peak-Peak), RMS		-	12	15.5	ps
t _{jitter (PHASE)}	I/O Phase Jitter (Peak-Peak), 10,000 clocks, ÷ 4 feedback, VCO = 250 MHz	Note 16	-	175	280	ps
	I/O Phase Jitter (Peak-Peak), RMS		-	24	46	ps
t _{OLZ} , t _{OHZ}	Output Disable Time	Note 10	1	-	10	ns
t _{OZL} , t _{OZH}	Output Enable Time	Notes 11, 12	0.5	-	14	ns
t _{lock}	Maximum PLL Lock Time		-	-	10	ms
t _{TB}	Total Timing Budget Window	Note 14	-	-	775	ps

Figure 2. AC Test Loads and Waveform^[17]

Notes

- Measured with no load.
- 7. t_{PW} is measured at Vcc/2.
- 8. 50Ω transmission line terminated into V_{CC}/2.
- 9. t_{PD} is specified for a 50 MHz input reference. The t_{PD} does not include jitter.
- 10. Measured at 0.5V deviation from starting voltage. 11. For t_{OZL} and t_{OZH} minimum, $C_L = 0$ pF, $R_L = 1$ k (to V_{CC} for t_{OZL} , to GND for t_{OZH}). For t_{OZH} and t_{OZH} maximum, CL= 25 pF and RL = 100 Ω (to V_{CC} for t_{OZL} , to GND for t_{OZH}).
- 12. t_{OZL} maximum is measured at 0.5V. t_{OZH} maximum is measured at 2.4V.
- 13. f_{max} measured with CL = 25 pF.
- 14. $t_{TB} = t_{pd} + t_{OS} + t_{jitter}$, this parameter is calculated and is the worst case between devices.
- 15. All outputs operating at the same frequency.
- 16. Not a tested parameter. Guaranteed by characterization.
- 17. These figures are for illustrations only. The actual ATE loads may vary.

AC Timing Diagrams

Ordering Information

Ordering Code	Package Name	Package Type	Operating Range
Pb-Free			
CY7B9973V-AXC	AZ52	52-Pin Thin Quad Flat Pack Commercial, 0°C to	
CY7B9973V-AXCT	AZ52	52-Pin Thin Quad Flat Pack, Tape and Reel Commercial, 0°C to 7	

Ordering Code Definitions

Package Diagram

DIMENSIONS ARE IN MILLIMETERS

Document Conventions

Units of Measure

Table 4. Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
°C	degrees Celsius	μVrms	microvolts root-mean-square
dB	decibels	μW	microwatts
dBc/Hz	decibels relative to the carrier per Hertz	mA	milliamperes
fC	femtoCoulomb	mm	millimeters
fF	femtofarads	ms	milliseconds
Hz	hertz	mV	millivolts
KB	1024 bytes	nA	nanoamperes
Kbit	1024 bits	ns	nanoseconds
kHz	kilohertz	nV	nanovolts
kΩ	kilohms	Ω	ohms
MHz	megahertz	pА	picoamperes
MΩ	megaohms	pF	picofarads
μA	microamperes	рр	peak-to-peak
μF	microfarads	ppm	parts per million
μH	microhenrys	ps	picoseconds
μs	microseconds	sps	samples per second
μV	microvolts	σ	sigma: one standard deviation

Acronyms

Table 5. Acronyms Used in this Documnent

Acronym	Description	
FSM	Finite State Machine	
LVPECL	Low-voltage positive emitter coupled logic	
LVTTL	Low-voltage transistor transistor logic	
OE	Output enable	
RMS	Root mean square	
PLL	Phase locked loop	
TQFP	Thin quad flat pack	
VCO	Voltage controlled oscillator	

Document History Page

	Document Title: CY7B9973V RoboClock [®] High Speed Multi-Output PLL Clock Buffer Document Number: 38-07430					
REV.	ECN No.	Issue Date	Orig. of Change	Description of Change		
**	115842	06/10/02	HWT	New Data Sheet		
*A	128182	09/15/03	RGL	Added phase and period jitter specifications Tightened duty cycle spec and split duty cycle based on output frequency		
*В	506217	See ECN	RGL	Minor Change: To post on web		
*C	2902940	04/01/10	KVM	KVM Removed reference to Motorola MPC973 on page 1. Added part numbers CY7B9973V-AXC, and CY7B9973V-AXCT in Ordering Information table; also added operating temperture range. Updated template and package diagram.		
*D	3057972	10/14/2010	BASH	AddedOrdering Code Definitions Added Units of Measure and Acronyms as per new template		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at

Cypress Locations.

Products

Automotive	cypress.com/go/automotive	PSoC Solutions
Clocks & Buffers	cypress.com/go/clocks	psoc.cypress.com/solutions
Interface	cypress.com/go/interface	PSoC 1 PSoC 3 PSoC 5
Lighting & Power Control	cypress.com/go/powerpsoc	
	cypress.com/go/plc	
Memory	cypress.com/go/memory	
Optical & Image Sensing	cypress.com/go/image	
PSoC	cypress.com/go/psoc	
Touch Sensing	cypress.com/go/touch	
USB Controllers	cypress.com/go/USB	
Wireless/RF	cypress.com/go/wireless	

© Cypress Semiconductor Corporation, 2003-2010. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document #: 38-07430 Rev. *D

Revised October 14, 2010

Page 12 of 12

RoboClock is a registered trademark of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders.