512K x 32 Static RAM #### **Features** - High speed - $-t_{AA} = 8, 10, 12 \text{ ns}$ - · Low active power - -1080 mW (max.) - Operating voltages of 3.3 ± 0.3V - 2.0V data retention - · Automatic power-down when deselected - TTL-compatible inputs and outputs - Easy memory expansion with CE₁, CE₂, and CE₃ features #### **Functional Description** The CY7C1062AV33 is a high-performance CMOS Static RAM organized as 524,288 words by 32 bits. Writing to the device is accomplished by enabling the chip $(\overline{CE}_1, \overline{CE}_2)$ and $(\overline{CE}_3, \overline{CE}_3)$ and forcing the Write Enable (\overline{WE}) input LOW. If Byte Enable A (\overline{B}_A) is LOW, then data from I/O pins (I/O_0) through I/O_7 , is written into the location specified on the address pins (A $_0$ through A $_{18}$). If Byte Enable B ($\overline{\rm B}_{\rm B}$) is LOW, then data from I/O pins (I/O $_8$ through I/O $_{15}$) is written into the location specified on the address pins (A $_0$ through A $_{18}$). Likewise, $\overline{\rm B}_{\rm C}$ and $\overline{\rm B}_{\rm D}$ correspond with the I/O pins I/O $_{16}$ to I/O $_{23}$ and I/O $_{24}$ to I/O $_{31}$, respectively. Reading from the device is accomplished by enabling the chip $(\overline{CE}_1, \overline{CE}_2, \text{ and } \overline{CE}_3 \text{ LOW})$ while forcing the Output Enable (\overline{OE}) LOW and Write Enable (\overline{WE}) HIGH. If the first Byte Enable (\overline{B}_A) is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$ to I/O $_7$. If Byte Enable B (\overline{B}_B) is LOW, then data from memory will appear on I/O $_8$ to I/O $_15$. Similarly, \overline{B}_c and \overline{B}_D correspond to the third and fourth bytes. See the truth table at the back of this data sheet for a complete description of read and write modes. The input/output pins (I/O $_0$ through I/O $_{31}$) are placed in a high-impedance state when the device is deselected (\overline{CE}_1 , \overline{CE}_2 or \overline{CE}_3 HIGH), the outputs are disabled (\overline{OE} HIGH), the byte selects are disabled (\overline{B}_{A-D} HIGH), or during a write operation (\overline{CE}_1 , \overline{CE}_2 , and \overline{CE}_3 LOW, and \overline{WE} LOW). The CY7C1062AV33 is available in a 119-ball pitch ball grid array (PBGA) package. #### **Selection Guide** | | | -8 | -10 | -12 | Unit | |------------------------------|-------------|-----|-----|-----|------| | Maximum Access Time | | 8 | 10 | 12 | ns | | Maximum Operating Current | Com'l | 300 | 275 | 260 | mA | | | Ind'I | 300 | 275 | 260 | | | Maximum CMOS Standby Current | Com'l/Ind'l | 50 | 50 | 50 | mA | # **Pin Configuration** ## 119-ball PBGA (Top View) | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |---|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------| | Α | I/O ₁₆ | Α | Α | Α | Α | Α | I/O ₀ | | В | I/O ₁₇ | Α | Α | Œ ₁ | Α | Α | I/O ₁ | | С | I/O ₁₈ | B _c | CE ₂ | NC | CE ₃ | B _a | I/O ₂ | | D | I/O ₁₉ | V_{DD} | V _{SS} | V _{SS} | V _{SS} | V_{DD} | I/O ₃ | | E | I/O ₂₀ | V_{SS} | V_{DD} | V_{SS} | V_{DD} | V_{SS} | I/O ₄ | | F | I/O ₂₁ | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | I/O ₅ | | G | I/O ₂₂ | V _{SS} | V_{DD} | V _{SS} | V_{DD} | V _{SS} | I/O ₆ | | Н | I/O ₂₃ | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | I/O ₇ | | J | NC | V_{SS} | V_{DD} | V_{SS} | V_{DD} | V _{SS} | DNU | | K | I/O ₂₄ | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | I/O ₈ | | L | I/O ₂₅ | V_{SS} | V_{DD} | V_{SS} | V_{DD} | V_{SS} | I/O ₉ | | М | I/O ₂₆ | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | I/O ₁₀ | | N | I/O ₂₇ | V_{SS} | V_{DD} | V_{SS} | V_{DD} | V_{SS} | I/O ₁₁ | | Р | I/O ₂₈ | V_{DD} | V _{SS} | V _{SS} | V _{SS} | V_{DD} | I/O ₁₂ | | R | I/O ₂₉ | Α | B _d | NC | B _b | Α | I/O ₁₃ | | Т | I/O ₃₀ | Α | Α | WE | Α | Α | I/O ₁₄ | | U | I/O ₃₁ | Α | Α | ŌĒ | Α | Α | I/O ₁₅ | **Maximum Ratings** (Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Supply Voltage on V_{CC} to Relative GND^[1] –0.5V to +4.6V DC Voltage Applied to Outputs in High-Z State^[1].....–0.5V to V_{CC} + 0.5V | DC Input Voltage ^[1] | -0.5V to V _{CC} + 0.5V | |---------------------------------|---------------------------------| | Current into Outputs (LOW) | 20 mA | ## **Operating Range** | Range | Ambient
Temperature | V _{CC} | |------------|------------------------|-----------------| | Commercial | 0°C to +70°C | $3.3V \pm 0.3V$ | | Industrial | –40°C to +85°C | | #### DC Electrical Characteristics Over the Operating Range | | | | | - | 8 | -1 | 10 | -1 | 12 | | |------------------|--|--|-------------|------|--------------------------|------------|--------------------------|------|--------------------------|------| | Parameter | Description | Test Condit | ions | Min. | Max. | Min. | Max. | Min. | Max. | Unit | | V _{OH} | Output HIGH Voltage | $V_{CC} = Min.,$
$I_{OH} = -4.0 \text{ mA}$ | | 2.4 | | 2.4 | | 2.4 | | V | | V _{OL} | Output LOW Voltage | $V_{CC} = Min.,$
$I_{OL} = 8.0 \text{ mA}$ | | | 0.4 | | 0.4 | | 0.4 | V | | V _{IH} | Input HIGH Voltage | | | 2.0 | V _{CC}
+ 0.3 | 2.0 | V _{CC}
+ 0.3 | 2.0 | V _{CC}
+ 0.3 | V | | V_{IL} | Input LOW Voltage[1] | | | -0.3 | 0.8 | -0.3 | 0.8 | -0.3 | 0.8 | V | | I _{IX} | Input Load Current | $GND \leq V_I \leq V_{CC}$ | | -1 | +1 | -1 | +1 | -1 | +1 | μΑ | | I _{OZ} | Output Leakage Current | $GND \leq V_OUT \leq V_CC, Output$ Disabled | | -1 | +1 | – 1 | +1 | -1 | +1 | μΑ | | I _{CC} | V _{CC} Operating | $V_{CC} = Max., f = f_{MAX}$ | Com'l | | 300 | | 275 | | 260 | mA | | | Supply Current | = 1/t _{RC} | Ind'I | | 300 | | 275 | | 260 | mA | | I _{SB1} | Automatic CE Power-down Current —TTL Inputs | $\begin{aligned} &\text{Max. V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{IH}} \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{IH}} \text{ or} \\ &\text{V}_{\text{IN}} \leq \text{V}_{\text{IL}}, f = \text{f}_{\text{MAX}} \end{aligned}$ | | | 70 | | 70 | | 70 | mA | | I _{SB2} | Automatic CE
Power-down Current
—CMOS Inputs | $\label{eq:max_vcc} \begin{split} &\frac{\text{Max. V}_{\text{CC}},}{\text{CE}} \geq \text{V}_{\text{CC}} - 0.3\text{V},\\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.3\text{V},\\ &\text{or V}_{\text{IN}} \leq 0.3\text{V}, \text{f} = 0 \end{split}$ | Com'l/Ind'l | | 50 | | 50 | | 50 | mA | ## Capacitance^[2] | Parameter | Description | Test Conditions | Max. | Unit | |------------------|-------------------|--|------|------| | C _{IN} | Input Capacitance | $T_A = 25^{\circ}C$, $f = 1$ MHz, $V_{CC} = 3.3V$ | 8 | pF | | C _{OUT} | I/O Capacitance | | 10 | pF | ## AC Test Loads and Waveforms^[3] #### Notes: - V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns. - Tested initially and after any design or process changes that may affect these parameters. Valid SRAM operation does not occur until the power supplies have reached the minimum operating V_{DD} (3.0V). As soon as 1ms (T_{power}) after reaching the minimum operating V_{DD}, normal SRAM operation can begin including reduction in V_{DD} to the data retention (V_{CCDR}, 2.0V) voltage. ## AC Switching Characteristics Over the Operating Range^[4] | | | | -8 | _ | 10 | -12 | | | | |---------------------------|---|-----------|----|------|-----------|-----|------|------|--| | Parameter | Description | Min. Max. | | Min. | Min. Max. | | Max. | Unit | | | Read Cycle | | <u> </u> | | | ı | | | | | | t _{power} | V _{CC} (typical) to the first access ^[5] | 1 | | 1 | | 1 | | ms | | | t _{RC} | Read Cycle Time | 8 | | 10 | | 12 | | ns | | | t _{AA} | Address to Data Valid | | 8 | | 10 | | 12 | ns | | | t _{OHA} | Data Hold from Address Change | 3 | | 3 | | 3 | | ns | | | t _{ACE} | CE ₁ , CE ₂ , or CE ₃ LOW to Data Valid | | 8 | | 10 | | 12 | ns | | | t _{DOE} | OE LOW to Data Valid | | 5 | | 5 | | 6 | ns | | | t _{LZOE} | OE LOW to Low-Z ^[6] | 1 | | 1 | | 1 | | ns | | | t _{HZOE} | OE HIGH to High-Z ^[6] | | 5 | | 5 | | 6 | ns | | | t _{LZCE} | $\overline{\text{CE}}_1$, $\overline{\text{CE}}_2$, or $\overline{\text{CE}}_3$ LOW to Low- $Z^{[6]}$ | 3 | | 3 | | 3 | | ns | | | t _{HZCE} | CE ₁ , CE ₂ , or CE ₃ HIGH to High-Z ^[6] | | 5 | | 5 | | 6 | ns | | | t _{PU} | CE ₁ , CE ₂ , or CE ₃ LOW to Power-up ^[7] | 0 | | 0 | | 0 | | ns | | | t _{PD} | $\overline{\text{CE}}_1$, $\overline{\text{CE}}_2$, or $\overline{\text{CE}}_3$ HIGH to Power-down ^[7] | | 8 | | 10 | | 12 | ns | | | t _{DBE} | Byte Enable to Data Valid | | 5 | | 5 | | 6 | ns | | | t _{LZBE} | Byte Enable to Low-Z ^[6] | 1 | | 1 | | 1 | | ns | | | t _{HZBE} | Byte Disable to High-Z ^[6] | | 5 | | 5 | | 6 | ns | | | Write Cycle ^{[8} | , 9] | <u>"</u> | | | | | | | | | t _{WC} | Write Cycle Time | 8 | | 10 | | 12 | | ns | | | t _{SCE} | CE ₁ , CE ₂ , or CE ₃ LOW to Write End | 6 | | 7 | | 8 | | ns | | | t _{AW} | Address Set-up to Write End | 6 | | 7 | | 8 | | ns | | | t _{HA} | Address Hold from Write End | 0 | | 0 | | 0 | | ns | | | t _{SA} | Address Set-up to Write Start | 0 | | 0 | | 0 | | ns | | | t _{PWE} | WE Pulse Width | 6 | | 7 | | 8 | | ns | | | t _{SD} | Data Set-up to Write End | 5 | | 5.5 | | 6 | | ns | | | t _{HD} | Data Hold from Write End | 0 | | 0 | | 0 | | ns | | | t _{LZWE} | WE HIGH to Low-Z ^[6] | 3 | | 3 | | 3 | | ns | | | t _{HZWE} | WE LOW to High-Z ^[6] | | 5 | | 5 | | 6 | ns | | | t _{BW} | Byte Enable to End of Write | 6 | | 7 | | 8 | | ns | | | | | | | | | | | | | #### Notes: - Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and transmission line loads. Test conditions for the read cycle use output loading as shown in (a) of AC Test Loads, unless specified otherwise. This part has a voltage regulator that steps down the voltage from 3V to 2V internally. t_{power} time has to be provided initially before a read/write operation is started. t_{HZOE}, t_{HZWE}, t_{HZWE}, t_{HZWE}, and t_{LZOE}, t_{LZCE}, t_{LZWE}, and t_{LZDE} are specified with a load capacitance of 5 pF as in (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage. These parameters are guaranteed by design and are not tested. The internal write time of the memory is defined by the overlap of CE1 LOW, CE 2 HIGH, CE3 LOW, and WE LOW. The chip enables must be active and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write. to the leading edge of the signal that terminates the <u>write</u>. The minimum write cycle time for Write Cycle No. 3 (WE controlled, $\overline{\text{OE}}$ LOW) is the sum of t_{HZWE} and t_{SD} . ## **Switching Waveforms** #### **Read Cycle No. 1**^[10, 11] t_{RC} **ADDRESS** t_{AA} t_{OHA} DATA OUT PREVIOUS DATA VALID DATA VALID ## Read Cycle No. 2 (OE Controlled) [11, 12] - Device is continuously selected. OE, CE, BA, BB, BC, BD = VIL. WE is HIGH for read cycle. Address valid prior to or coincident with CE transition LOW. ## Switching Waveforms (continued) ## Write Cycle No. 1 (CE Controlled)[13, 14, 15] ## Write Cycle No. 2 (BLE or BHE Controlled)^[13, 14, 15] #### Notes: - 13. CE indicates a combination of <u>all</u> three chip enables. When ACTIVE LOW, CE indicates the CE₁, CE₂ and CE₃ are LOW. 14. Data I/O is high-impedance if OE or B_A, B_B, B_C, B_D = V_{IH}. 15. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state. ## Switching Waveforms (continued) ## Write Cycle No. 3 (WE Controlled, OE LOW) ## **Truth Table** | CE ₁ | CE ₂ | CE ₃ | ŌE | WE | B _A | B _B | B _c | \overline{B}_{D} | I/O ₀ –
I/O ₇ | I/O ₈ –
I/O ₁₅ | I/O ₁₆ -
I/O ₂₃ | I/O ₂₄ -
I/O ₃₁ | Mode | Power | |-----------------|-----------------|-----------------|----|----|----------------|----------------|----------------|--------------------|--|---|--|--|----------------------------------|--------------------| | Н | L | Н | Χ | Χ | Х | Χ | Х | Х | High-Z | High-Z | High-Z | High-Z | Power Down | (I _{SB}) | | L | Н | L | Χ | Χ | Χ | Χ | Χ | Х | High-Z | High-Z | High-Z | High-Z | Power Down | (I _{SB}) | | L | L | L | L | Н | L | L | L | L | Data Out | Data Out | Data Out | Data Out | Read All Bits | (I _{CC}) | | L | L | Г | Г | Н | ∟ | I | Η | Н | Data Out | High-Z | High-Z | High-Z | Read Byte A
Bits Only | (I _{CC}) | | L | L | L | L | Ι | Η | L | Η | Н | High-Z | Data Out | High-Z | High-Z | Read Byte B
Bits Only | (I _{CC}) | | L | L | L | L | I | I | I | L | Н | High-Z | High-Z | Data Out | High-Z | Read Byte C
Bits Only | (I _{CC}) | | L | L | L | L | Ι | Η | I | Η | L | High-Z | High-Z | High-Z | Data Out | Read Byte D
Bits Only | (I _{CC}) | | L | L | L | Χ | L | L | L | L | L | Data In | Data In | Data In | Data In | Write All Bits | (I _{CC}) | | L | L | L | Х | L | L | I | Η | Н | Data In | High-Z | High-Z | High-Z | Write Byte A
Bits Only | (I _{CC}) | | L | L | L | Х | L | Н | L | Н | Н | High-Z | Data In | High-Z | High-Z | Write Byte B
Bits Only | (I _{CC}) | | L | L | L | Х | L | Н | Н | L | Н | High-Z | High-Z | Data In | High-Z | Write Byte C
Bits Only | (I _{CC}) | | L | L | L | Х | L | Н | Н | Н | L | High-Z | High-Z | High-Z | Data In | Write Byte D
Bits Only | (I _{CC}) | | L | L | L | I | H | Х | Х | Х | X | High-Z | High-Z | High-Z | High-Z | Selected,
Outputs
Disabled | (I _{CC}) | ### **Ordering Information** | Speed
(ns) | Ordering Code | Package
Name | Package Type | Operating
Range | |---------------|--------------------|-----------------|--------------------------|--------------------| | 8 | CY7C1062AV33-8BGC | BG119 | 14 x 22 mm 119-ball PBGA | Commercial | | | CY7C1062AV33-8BGI | | | Industrial | | 10 | CY7C1062AV33-10BGC | | | Commercial | | | CY7C1062AV33-10BGI | | | Industrial | | 12 | CY7C1062AV33-12BGC |] | | Commercial | | | CY7C1062AV33-12BGI | | | Industrial | ## **Package Diagram** #### 119-ball PBGA (14 x 22 x 2.4 mm) BG119 All product and company names mentioned in this document may be the trademarks of their respective holders. # **Document History Page** | REV. | ECN NO. | Issue Date | Orig. of
Change | Description of Change | |------|---------|------------|--------------------|---| | ** | 109752 | 02/27/02 | HGK | New Data Sheet | | *A | 117059 | 09/19/02 | DFP | Removed 15-ns bin and added 8-ns bin. Changed CE_2 TO CE_2 . Changed C_{IN} – input capacitance – from 6 pF to 8 pF. Changed C_{OUT} – output capacitance – from 8 pF to 10 pF. | | *B | 119389 | 10/07/02 | DFP | Updated I _{CC} , T _{sd} , and T _{doe} parameters.
Removed note 7 (I _Z /h _Z comment). | | *C | 120384 | 11/13/02 | DFP | Final Data Sheet. Removed note 2. Added note 3 to "AC Test Loads and Waveforms" and note 7 to t _{pu} and t _{pd} | | *D | 124440 | 2/25/03 | MEG | Changed ISB1 from 100 mA to 70 mA |