

CY7C271A

Features

- CMOS for optimum speed/power
- Windowed for reprogrammability
- High speed
 - 25 ns (Commercial)
- Low power
 - 275 mW (Commercial)
- Super low standby power
 - Less than 85 mW when deselected
- EPROM technology 100%programmable
- Slim 300-mil package
- Direct replacement for bipolar PROMs
- Capable of withstanding >4001V static discharge

Functional Description

The CY7C271A is a high-performance 32,768-word by 8-bit CMOS PROM. When disabled (\overline{CE} HIGH), the 7C271A

32K x 8 Power Switched and Reprogrammable PROM

automatically powers down into a low-power stand-by mode. The CY7C271A is packaged in the 300-mil slim package and is available in a cerDIP package equipped with an erasure window to provide for reprogrammability. When exposed to UV light, the PROM is erased and can be reprogrammed. The memory cells utilize proven EPROM floating gate technology and byte-wide intelligent programming algorithms.

The CY7C271A offers the advantages of lower power, superior performance, and programming yield. The EPROM cell requires only 12.5V for the super voltage, and low current requirements allow for gang programming. The EPROM cells allow each memory location to be tested 100% because each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming, the product will meet DC and AC specification limits.

Reading the 7C271A is accomplished by placing active LOW signals on \overline{CS}_1 and \overline{CE} , and an active HIGH on CS_2 . The contents of the memory location addressed by the address lines (A₀-A₁₄) will become available on the output lines (O₀-O₇).

Selection Guide

		7C271A-25	7C271A-30	7C271A-35	7C271A-45	Unit
Maximum Access Time		25	30	35	45	ns
Maximum Operating Current	Com'l	75	75	50	50	mA
Standby Current	Com'l	15	15	15	15	mA

Maximum Ratings^[1]

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage to Ground Potential0.5V to +7.0V
DC Voltage Applied to Outputs
in High Z State0.5V to +7.0V
DC Input Voltage

DC Program Voltage	13.0V
Static Discharge Voltage (per MIL-STD-883, Method 3015)	>4001V
Latch-Up Current	>200 mA
UV Exposure	. 7258 Wsec/cm ²

Operating Range

Range	Ambient Temperature	v _{cc}
Commercial	0°C to +700°C	5V ±10%

Electrical Characteristics Over the Operating Range^[2, 3]

					1A-25 1A-30	7C27	1A-35	7C27	'1A-45	
Parameter	Description	Test Conditions		Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -2.0 mA$	V_{CC} = Min., I_{OH} = -2.0 mA			2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0 \text{ mA}$			0.4		0.4		0.4	V
V _{IH}	Input HIGH Level	Guaranteed Input Logical Voltage for All Inputs	2.0	V _{CC}	2.0	V _{CC}	2.0	V _{CC}	V	
V _{IL}	Input LOW Level	Guaranteed Input Logical Voltage for All Inputs		0.8		0.8		0.8	V	
I _{IX}	Input Leakage Current	$GND \le V_{IN} \le V_{CC}$	$GND \leq V_{IN} \leq V_{CC}$			-10	+10	-10	+10	μA
I _{OZ}	Output Leakage Current	$GND \leq V_{OUT} \leq V_{CC},$ Output Disable				-10	+10	-10	+10	μA
I _{OS}	Output Short Circuit Current ^[4]	V _{CC} = Max., V _{OUT} = GND		-20	-90	-20	-90	-20	-90	mA
I _{CC}	Power Supply Current	V_{CC} =Max., I_{OUT} = 0 mA, Com'l f = 10 MHz			75		50		50	mA
I _{SB}	Stand-By Current	$\frac{V_{CC}}{CE} = Max.,$	Com'l		15		15		15	mA

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, f = 1 MHz,	10	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	10	pF

Notes:

The voltage on any input or I/O pin cannot exceed the power pin during power-up.
 See the last page of this specification for Group A subgroup testing information.
 See Introduction to CMOS PROMs in this Data Book for general information on testing.
 For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT
200Ω
250Ω MIL
0UTPUT 0
2.00V Commercial
1.90V MIL

Switching Characteristics Over the Operating Range^[2, 3]

		7C27	1A-25	7C27	1A-30	7C27	1 A- 35	7C27	1A-45	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{AA}	Address to Output Valid		25		30		35		45	ns
t _{ACS}	\overline{CS}_1/CS_2 Active to Output Valid		12		18		18		18	ns
t _{ACE}	CE Active to Output Valid		30		35		35		45	ns
t _{HZCS}	$\overline{\text{CS}}_1/\text{CS}_2$ Inactive to High Z		12		18		18		18	ns
t _{HZCE}	CE Inactive to High Z		12		18		18		18	ns
t _{PU}	CE Active to Power-Up	0		0		0		0		ns
t _{PD}	CE Inactive to Power-Down		30		35		40		40	ns
t _{OH}	Output Data Hold	0		0		0		0		ns

Switching Waveform

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase the CY7C271A in the windowed package. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.

The recommended dose of ultraviolet light for erasure is a wavelength of 2537 Angstroms for a minimum dose (UV intensity multiplied by exposure time) of 25 Wsec/cm². For an ultraviolet lamp with a 12 mW/cm² power rating, the exposure time would be approximately 35 minutes. The CY7C271A

needs to be within 1 inch of the lamp during erasure. Permanent damage may result if the PROM is exposed to high-intensity UV light for an extended period of time. 7258 Wsec/cm² is the recommended maximum dosage.

Programming Modes

Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed programming information, including a listing of software packages, please see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cypress representative.

Parameter	Description	Min.	Max.	Unit
V _{PP}	Programming Power Supply	12.5	13	V
I _{PP}	Programming Supply Current		50	mA
V _{IHP}	Programming Input Voltage HIGH	3.0	V _{CC}	V
V _{ILP}	Programming Input Voltage LOW	-0.5	0.4	V
V _{CCP}	Programming V _{CC}	6.0	6.5	V

Table 1. Programming Electrical Characteristics

Table 2. Mode Selection

Pin Function ^[5]						
Mode	CS ₁ /V _{PP}	CS ₂ /PGM	CE/VFY	A ₀	A ₉	Data
Read	V _{IL}	V _{IH}	V _{IL}	A ₀	A ₉	O ₇ –O ₀
Output Disable	V _{IH}	V _{IH}	V _{IL}	A ₀	A ₉	High Z
Output Disable	V _{IL}	V _{IL}	V _{IL}	A ₀	A ₉	High Z
Stand-by	Х	Х	V _{IH}	A ₀	A ₉	High Z
Program	V _{PP}	V _{ILP}	V _{IHP}	A ₀	A ₉	D ₇ –D ₀
Program Verify	V _{PP}	V _{IHP}	V _{ILP}	A ₀	A ₉	O ₇ –O ₀
Program Inhibit	V _{PP}	V _{IHP}	V _{IHP}	Х	Х	Х
Signature (MFG)	V _{ILP}	V _{ILP}	V _{ILP}	V _{ILP}	V _{HV} ^[6]	34H
Signature (DEV)	V _{ILP}	V _{ILP}	V _{ILP}	V _{IHP}	V _{HV} ^[6]	20H

Note:

5. X can be V_{II} or V_{IH}. 6. V_{HV}=12 \pm 0.5V

Programming Pinouts

Typical DC and AC Characteristics

C271A-9

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
25	CY7C271A-25JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
30	CY7C271A-30PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
35	CY7C271A-35PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C271A-35WC	W22	28-Lead (300-Mil) Windowed CerDIP	
45	CY7C271A-45WC	W22	28-Lead (300-Mil) Windowed CerDIP	Commercial

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL}	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC}	1, 2, 3
I _{SB}	1, 2, 3

Switching Characteristics

Parameter	Subgroups
t _{AA}	7, 8, 9, 10, 11
t _{ACS}	7, 8, 9, 10, 11
t _{ACE}	7, 8, 9, 10, 11

Package Diagrams

28-Lead (300-Mil) Molded DIP P21

32-Lead Plastic Leaded Chip Carrier J65

Package Diagrams (continued)

All product and company names mentioned in this document may be the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Document History Page

Document Title: CY7C271A 32K x 8 Power Switched and Reprogrammable PROM Document Number: 38-04013				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	114409	3/26/02	DSG	Change from Spec number: 38-00424 to 38-04013
*A	118899	9/13/02	GBI	Update Ordering Information
*В	122254	12/26/02	RBI	Add power up requirements to maximum ratings information