

PRELIMINARY

CYM1846V33

512K x 32 3.3V Static RAM Module

Features

- High-density 3.3V 16-megabit SRAM module
- 32-bit Standard Footprint supports densities from 16K x 32 through 2M x 32
- High-speed SRAMs

 Access time of 12 ns
- Low active power
 - -1.650W (max.) at 12 ns
- 72 pins
- Available in ZIP, SIMM format

Functional Description

The CYM1846V33 is a high-performance 3.3V 16-megabit static RAM module organized as 512K words by 32 bits. This

module is constructed from four 512K x 8 SRAMs in SOJ packages mounted on an epoxy laminate substrate. Four chip selects are used to independently enable the four bytes. Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects.

The CYM1846V33 is designed for use with standard 72-pin SIMM sockets. The pinout is downward compatible with the 64-pin JEDEC ZIP/SIMM module family (CYM1821, CYM1831, CYM1836, and CYM1841). Thus, a single motherboard design can be used to accommodate memory depth ranging from 16K words (CYM1821) to 1,024K words (CYM1851). The CYM1846V33 is offered in vertical SIMM configuration and is available with either tin-lead or 10 micro-inches of gold flash on the edge contacts.

Presence detect pins (PD_0 – PD_3) are used to identify module memory density in applications where modules with alternate word depths can be interchanged.

Selection Guide

	1846V33-12	1846V33-15	1846V33-20	1846V33-25	1846V33-35
Maximum Access Time (ns)	12	15	20	25	35
Maximum Operating Current (mA)	820	800	780	780	780
Maximum Standby Current (mA)	120	120	120	120	120

Shaded area contains advance information.

Maximum Ratings ^[1]

DC Input Voltage-0.5V to +4.6V

(Above which the useful life may be impaired. For user guide- lines, not tested.)
Storage Temperature55°C to +125°C
Ambient Temperature with Power Applied10°C to +85°C
Supply Voltage to Ground Potential0.5V to +4.6V
DC Voltage Applied to Outputs in High Z State0.5V to +V_CC

Operating Range

Range	Ambient Temperature	v _{cc}
Commercial	0°C to +70°C	3.3V + 10% / –5%

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Condi	Min.	Max.	Unit	
V _{OH}	Output HIGH Voltage	V_{CC} = Min., I_{OH} = -4.0 mA		2.4		V
V _{OL}	Output LOW Voltage	V_{CC} = Min., I_{OL} = 4.0 mA			0.4	V
V _{IH}	Input HIGH Voltage			2.0	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage					V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	$GND \le V_I \le V_{CC}$		+10	μA
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Output E	-10	+10	μA	
I _{CC}	V _{CC} Operating Supply	$V_{CC} = Max., I_{OUT} = 0 mA,$	-12		820	mA
	Current	$\overline{\text{CS}}_{\text{N}} \leq \text{V}_{\text{IL}}, \text{F} = \text{F}_{\text{MAX}}$	-15		800	mA
			-20,-25,-35		780	mA
I _{SB1}	Automatic CS Power-Down	Max. V_{CC} , $\overline{CS} \ge V_{IH}$,	-12		180	mA
	Current ^[2]	Min. Duty Cycle = 100%	-15		160	mA
			-20,-25,-35		140	mA
I _{SB2}	Automatic CS Power-Down Current ^[2]	$\begin{array}{l} \text{Max. } V_{CC}, \overline{CS} \geq V_{CC} - 0.2^{V} \\ \text{or } V_{IN} \leq 0.2^{V} \end{array}$		120	mA	

Shaded area contains advance information.

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{INA}	Input Capacitance (WE, OE, A ₀₋₁₈)	$T_{A} = 25^{\circ}C, f = 1 \text{ MHz},$	32	pF
C _{INB}	Input Capacitance (CS)	$V_{CC} = 5.0V$	8	pF
C _{OUT}	Output Capacitance		8	pF

Notes:

If device is operated at these settings, long term reliability will be affected.
 A pull-up resistor to V_{CC} on the CS input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given.
 Tested on a sample basis.

AC Test Loads and Waveforms

167Ω OUTPUT O **O** 1.73V

Switching Characteristics Over the Operating Range^[4]

		1846	/33-12	1846\		
Parameter	Description	Min.	Max.	Min.	Max.	Unit
READ CYCLE	1		1			
t _{RC}	Read Cycle Time	12		15		ns
t _{AA}	Address to Data Valid		12		15	ns
t _{OHA}	Data Hold from Address Change	3		3		ns
t _{ACS}	CS LOW to Data Valid		12		15	ns
t _{DOE}	OE LOW to Data Valid		7		8	ns
t _{LZOE}	OE LOW to Low Z	0		0		ns
t _{HZOE}	OE HIGH to High Z		7		8	ns
t _{LZCS}	CS LOW to Low Z ^[5]	3		3		ns
t _{HZCS}	CS HIGH to High Z ^[5, 6]		7		8	ns
t _{PD}	CS HIGH to Power-Down		12		15	ns
WRITE CYCLE	7]			•		
t _{WC}	Write Cycle Time	12		15		ns
t _{SCS}	CS LOW to Write End	9		10		ns
t _{AW}	Address Set-Up to Write End	9		10		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	1		1		ns
t _{PWE}	WE Pulse Width	10		12		ns
t _{SD}	Data Set-Up to Write End	7		8		ns
t _{HD}	Data Hold from Write End	1		1		ns
t _{LZWE}	WE HIGH to Low Z	3		3		ns
t _{HZWE}	WE LOW to High Z ^[6]	0	7	0	8	ns

Shaded area contains advance information.

Notes:

4. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified l_{0L}/l_{0H} and 30-pF load capacitance.
5. At any given temperature and voltage condition, t_{HZCS} is less than t_{LZCS} for any given device. These parameters are guaranteed and not 100% tested.
6. t_{HZCS} and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads and Waveforms. Transition is measured ±500 mV from steady-state voltage.
7. The internal write time of the memory is defined by the overlap of CS LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching	Characteristics	Over the	Operating	Range ^[4]	(continued)
-----------	-----------------	----------	-----------	----------------------	-------------

		1846	/33-20	1846\	/33-25	1846	/33-35	
Parameter	Parameter Description		Max.	Min.	Max.	Min.	Max.	Unit
READ CYCLE		ł						
t _{RC}	Read Cycle Time	20		25		35		ns
t _{AA}	Address to Data Valid		20		25		35	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACS}	CS LOW to Data Valid		20		25		35	ns
t _{DOE}	OE LOW to Data Valid		12		15		18	ns
t _{LZOE}	OE LOW to Low Z	0		0		0		ns
t _{HZOE}	OE HIGH to High Z		10		12		15	ns
t _{LZCS}	CS LOW to Low Z ^[5]	3		3		3		ns
t _{HZCS}	CS HIGH to High Z ^[5, 6]		10		12		15	ns
t _{PD}	CS HIGH to Power-Down		20		25		35	ns
WRITE CYCLI	E ^[7]	ł						
t _{WC}	Write Cycle Time	20		25		35		ns
t _{SCS}	CS LOW to Write End	17		20		30		ns
t _{AW}	Address Set-Up to Write End	17		20		30		ns
t _{HA}	Address Hold from Write End	3		3		3		ns
t _{SA}	Address Set-Up to Write Start	2		2		2		ns
t _{PWE}	WE Pulse Width	15		20		30		ns
t _{SD}	Data Set-Up to Write End	12		15		20		ns
t _{HD}	Data Hold from Write End	2		2		2		ns
t _{LZWE}	WE HIGH to Low Z	3		3		3		ns
t _{HZWE}	WE LOW to High Z ^[6]	0	12	0	12	0	15	ns

Switching Waveforms

Notes: 8. WE is HIGH for read cycle. 9. Device is continuously selected, $\overline{CS} = V_{IL}$, and $\overline{OE} = V_{IL}$.

Switching Waveforms (continued)

Read Cycle No. 2 [8,10]

Write Cycle No. 1 ($\overline{\text{WE}}$ Controlled) [7]

Note:

10. Address valid prior to or coincident with \overline{CS} transition LOW.

Switching Waveforms (continued)

Truth Table

CS	WE	OE	Inputs/Output	Mode
Н	Х	Х	High Z	Deselect/Power-Down
L	Н	L	Data Out	Read
L	L	Х	Data In	Write
L	Н	Н	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Type	Package Type	Operating Range
12	CYM1846V33PM-12C	PM21	72-Pin Plastic SIMM Module	Commercial
	CYM1846V33P8-12C	PM21	72-Pin Plastic SIMM Module (gold contacts)	
	CYM1846V33PZ-12C	PZ11	72-Pin Plastic ZIP Module	
15	CYM1846V33PM-15C	PM21	72-Pin Plastic SIMM Module	
	CYM1846V33P8-15C	PM11	72-Pin Plastic SIMM Module (gold contacts)	
	CYM1846V33PZ-15C	PZ11	72-Pin Plastic ZIP Module	
20	CYM1846V33PM-20C	PM21	72-Pin Plastic SIMM Module	
	CYM1846V33P8-20C	PM21	72-Pin Plastic SIMM Module (gold contacts)	
	CYM1846V33PZ-20C	PZ11	72-Pin Plastic ZIP Module	
25	CYM1846V33PM-25C	PM21	72-Pin Plastic SIMM Module	
	CYM1846V33P8-25C	PM21	72-Pin Plastic SIMM Module (gold contacts)	
	CYM1846V33PZ-25C	PZ11	72-Pin Plastic ZIP Module	

Shaded area contains advance information. Note:

11. If CS goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

Ordering Information (continued)

Speed (ns)	Ordering Code	Package Type	Package Type	Operating Range
35	CYM1846V33PM-35C	PM21	72-Pin Plastic SIMM Module	Commercial
	CYM1846V33P8-35C	PM21	72-Pin Plastic SIMM Module (gold contacts)	
	CYM1846V33PZ-35C	PZ11	72-Pin Plastic ZIP Module]

Package Diagrams

72-Pin Plastic SIMM Module PM21

72-Pin Plastic ZIP Module PZ11

Document #: 38-05275 Rev. **

© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor against all charges.

Document Title: CYM1846V33 512K x 32 3.3V Static RAM Module Document Number: 38-05275						
REV. ECN NO. Issue Orig. of Change Description of Change						
**	114176	3/19/02	DSG	Change from Spec number: 38-M-00089 to 38-05275		