

CMOS Quad SPST Analog Switch

The DG201 solid state analog switch is designed using an improved, high voltage CMOS monolithic technology. It provides ease-of-use and performance advantages not previously available from solid state switches. Destructive latch-up of solid state analog gates have been eliminated by Intersil's CMOS technology.

The DG201 is completely specification and pinout compatible with the industry standard devices.

Part Number Information

PART NUMBER	TEMP. RANGE (^o C)	PACKAGE	PKG. NO.
DG201CJ	0 to 70	16 Ld PDIP	E16.3

Functional Diagram

DG201 SWITCH CELL

TRUTH TABLE

LOGIC	DG201
0	ON
1	OFF

Features

- Switches Greater than $28V_{P\mbox{-}P}$ Signals with $\pm 15V$ Supplies
- Break-Before-Make Switching
- TTL, DTL, CMOS, PMOS Compatible

May 2001

- Non-Latching with Supply Turn-Off
- Complete Monolithic Construction
- Industry Standard (DG201)

Applications

- Data Acquisition
- · Sample and Hold Circuits
- Operational Amplifier Gain Switching Networks

Pinout

SWITCHES SHOWN FOR LOGIC "1" INPUT

3115.5

File Number

1

Pin Descriptions

PIN	SYMBOL	DESCRIPTION
1	IN ₁	Logic Control for Switch 1
2	D ₁	Drain (Output) Terminal for Switch 1
3	S ₁	Source (Input) Terminal for Switch 1
4	V-	Negative Power Supply Terminal
5	GND	Ground Terminal (Logic Common)
6	S ₄	Source (Input) Terminal for Switch 4
7	D ₄	Drain (Output) Terminal for Switch 4
8	IN ₄	Logic Control for Switch 4
9	IN ₃	Logic Control for Switch 3
10	D ₃	Drain (Output) Terminal for Switch 3
11	S ₃	Source (Input) Terminal for Switch 3
12	V _{REF}	Logic Reference Voltage
13	V+	Positive Power Supply Terminal (Substrate)
14	S ₂	Source (Input) Terminal for Switch 2
15	D ₂	Drain (Output) Terminal for Switch 2
16	IN ₂	Logic Control for Switch 2

Absolute Maximum Ratings

V+ to V	
V+ to V _D	
V _D to V	
V_D to V_S	
V _{REF} to V 33V	
V _{REF} to V _{IN}	
V _{REF} to GND 20V	
V _{IN} to GND	
Current (Any Terminal)	

Operating Conditions

Temperature Range

"C" Suffix0°C to 70°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $T_A = 25^{\circ}C$, $V_{+} = +15V$, $V_{-} = -15V$

		"C" SUFFIX			
PARAMETER	TEST CONDITIONS	0°C	(NOTE 2) 25°C	70 ⁰ C	UNITS
DYNAMIC CHARACTERISTICS			-		-
Turn-ON Time (Note 3), t _{ON}	$R_L = 1k\Omega$, $V_{ANALOG} = -10V$ to +10V (Figure 1)	-	1.0	-	μs
Turn-OFF Time (Note 3), t _{OFF}	$R_L = 1k\Omega$, $V_{ANALOG} = -10V$ to +10V (Figure 1)	-	0.5	-	μs
Charge Injection, Q	Figure 2	-	20 (Typ)	-	mV
Off Isolation Rejection Ratio, OIRR	$f = 1MHz, R_L = 100\Omega, C_L \le 5pF, (Figure 3)$	-	50 (Typ)	-	dB
Crosstalk (Channel-to-Channel), CCRR	One Channel Off	-	-50 (Typ)	-	dB
DIGITAL INPUT CHARACTERISTICS					-1
Input Logic Current, I _{IN(ON)}	V _{IN} = 0.8V (Note 3)	±1	±1	±10	μΑ
Input Logic Current, I _{N(OFF)}	V _{IN} = 2.4V (Note 3)	±1	±1	±10	μA
ANALOG SWITCH CHARACTERISTICS					
Analog Signal Range, V _{ANALOG}		-	±15 (Typ)	-	V
Drain-Source ON Resistance, r _{DS(ON)}	$I_{S} = 10 \text{mA}, V_{ANALOG} = \pm 10 \text{V}$	100	100	125	Ω
Channel-to-Channel rDS(ON) Match, rDS(ON)		-	30 (Тур)	-	Ω
Drain OFF Leakage Current, ID(OFF)	$V_{ANALOG} = -14V$ to $+14V$	-	±5	100	nA
Source OFF Leakage Current, IS(OFF)	$V_{ANALOG} = -14V$ to $+14V$	-	±5	100	nA
Channel ON Leakage Current, I _{D(ON)} + I _{S(ON)}	$V_D = V_S = -14V$ to +14V	-	±5	200	nA
POWER SUPPLY CHARACTERISTICS	· · · ·				
Supply Current, I+ Positive	$V_{IN} = 0V \text{ or } V_{IN} = 5V$	2000	1000	2000	μA
Supply Current, I- Negative		2000	1000	2000	μA

NOTES:

2. Typical values are for design aid only, not guaranteed and not subject to production testing.

3. All channels are turned off by high "1" logic inputs and all channels are turned on by low "0" inputs; however 0.8V to 2.4V describes the minimum range for switching properly. Peak input current required for transition is typically -120µA.

Thermal Information

Thermal Resistance (Typical, Note 1)	θ_{JA} (^o C/W)	θ_{JC} (°C/W)
PDIP Package	90	N/A
Maximum Junction Temperature		
Plastic Package		
Maximum Storage Temperature Range	65	5°C to 150°C
Maximum Lead Temperature (Soldering 1	0s)	300 ⁰ C

Test Circuits

FIGURE 1. tON AND TOFF TEST CIRCUIT

FIGURE 3. OFF ISOLATION TEST CIRCUIT

Typical Applications

Using the V_{REF} Terminal

The DG201 has an internal voltage divider setting the TTL threshold on the input control lines for V+ equal to +15V. The schematic shown in Figure 4 with nominal resistor values, gives approximately 2.4V on the V_{REF} pin. As the TTL input signal goes from +0.8V to +2.4V, Q₁ and Q₂ switch states to turn the switch ON and OFF. If the power supply voltage is less than +15V, then a resistor (R_{EXT}) must be added between V+ and the V_{REF} pin, to restore +2.4V at V_{REF}. The table shows the value of this resistor for various supply voltages, to maintain TTL compatibility. If CMOS logic levels with a +5V supply are being used, the threshold shifts are less critical, but a separate column of suitable values is given in the table. For logic swings of -5V to + 5V, no resistor is needed.

In general, the "low" logic level should be <0.8V to prevent Q_1 and Q_2 from both being ON together (this will cause incorrect switch function).

V+ SUPPLY (V)	R _{EXT} FOR TTL LEVELS (kΩ)	R _{EXT} FOR CMOS LEVELS (kΩ)			
+15	-	-			
+12	420	-			
+10	190	-			
+9	136	136			
+8	98	98			
+7	70	70			

4

ТΔ	BI	F	1
	_	_	

Typical Performance Curves

FIGURE 5. rDS(ON) vs VD AND TEMPERATURE

FIGURE 7. ID(ON) vs TEMPERATURE

FIGURE 6. r_{DS(ON)} vs V_D AND POWER SUPPLY VOLTAGE

FIGURE 8. IS(OFF) OR ID(OFF) vs TEMPERATURE

DG201

Die Characteristics

DIE DIMENSIONS:

94 mils x 101 mils x 14 mils

METALLIZATION:

Type: Al Thickness: 10kÅ

PASSIVATION:

Type: SiO_2/Si_3N_4 SiO_2 Thickness: $7k\mathring{A}$ Si_3N_4 Thickness: $8k\mathring{A}$

WORST CASE CURRENT DENSITY:

 $1 \text{ x } 10^5 \text{ A/cm}^2$

Metallization Mask Layout

† BACKSIDE OF CHIP IS V+

Dual-In-Line Plastic Packages (PDIP)

NOTES:

- 1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- 3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
- Dimensions A, A1 and L are measured with the package seated in JE-DEC seating plane gauge GS-3.
- 5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).
- E and e_A are measured with the leads constrained to be perpendicular to datum -C-.
- 7. e_B and e_C are measured at the lead tips with the leads unconstrained. e_C must be zero or greater.
- B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25mm).
- 9. N is the maximum number of terminal positions.
- Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).

E16.3 (JEDEC MS-001-BB ISSUE D)
16 LEAD	DUAL-IN-LINE PLASTIC PACKAGE

	INC	HES	MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
A	-	0.210	-	5.33	4
A1	0.015	-	0.39	-	4
A2	0.115	0.195	2.93	4.95	-
В	0.014	0.022	0.356	0.558	-
B1	0.045	0.070	1.15	1.77	8, 10
С	0.008	0.014	0.204	0.355	-
D	0.735	0.775	18.66	19.68	5
D1	0.005	-	0.13	-	5
E	0.300	0.325	7.62	8.25	6
E1	0.240	0.280	6.10	7.11	5
е	0.100	BSC	2.54 BSC		-
e _A	0.300	BSC	7.62 BSC		6
eB	-	0.430	-	10.92	7
L	0.115	0.150	2.93	3.81	4
N	1	6	16		9
Rev 0 12/93					

Rev. 0 12/93

All Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems.

Intersil Corporation's quality certifications can be viewed at website www.intersil.com/design/quality/iso.asp

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation 2401 Palm Bay Rd. Palm Bay, FL 32905 TEL: (321) 724-7000 FAX: (321) 724-7240

EUROPE

Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 **ASIA** Intersil Ltd. 8F-2, 96, Sec. 1, Chien-kuo North, Taipei, Taiwan 104 Republic of China TEL: 886-2-2515-8508 FAX: 886-2-2515-8369

7