DM54LS451A/DM74LS451A Dual 8:1 Multiplexer

General Description

The Dual Mux selects one of eight inputs, D0 through D7, specified by three binary select inputs, A, B and C. The true data is output on Y when strobed by S. Propagation delays are the same for inputs, addresses and strobes and are specified for 50 pF loading. Outputs conform to the standard 8 mA LS totem pole drive standard.

Connection Diagram

See NS Package Number J24F, N24C or V28A

Features

- 24-pin SKINNYDIP saves space
- Twice the density of 74LS151
- Low current PNP inputs reduce loading
- 15 ns typical propagation delay

Function Table

	Outputs					
Select			Strobe	v		
С	В	Α	S	•		
х	х	х	н	н		
L	L	L	L	D0		
L	L	н	L	D1		
L	н	L	L	D2		
L	н	н	L	D3		
н	L	L	L	D4		
н	L	н	L	D5		
н	н	L	L	D6		
н	Н	Н	L	D7		

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage V _{CC}	-0.5V to +7V (Note 2)
Input Voltage	-1.5V to +5.5V (Note 2)
Off-State Output Voltage	-1.5V to +5.5V (Note 2)
Input Current	-30.0 mA to +5.0 mA (Note 2)
Output Current (IOL)	+ 100 mA
Storage Temperature	-65°C to +150°C

Recommended Operating Conditions	

Ambient Temperature with Power Applied	-65°C to +125°C
Junction Temperature with Power Applied	-65°C to +150°C
ESD Tolerance $C_{ZAP} = 100 \text{ pF}$ $R_{ZAP} = 1500\Omega$ Torth Natheod University Model	2000V
Test Method: Human Body Model Test Specification: NSC SOP-5-028	

Symbol	Parameter	Military				Units		
	. arameter	Min	Nom	Max	Min	Nom	Max	onno
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	v
TA	Operating Free-Air Temperature	-55		125	0		75	°C

Electrical Characteristics Over Recommended Operating Conditions

Symbol	Parameter	Test Conditions				Тур	Max	Units
VIL	Low Level Input Voltage (Note 3)						0.8	V
VIH	High Level Input Voltage (Note 3)							v
VIC	Input Clamp Voltage	V _{CC} = Min, I	= -18 mA				-1.5	v
կլ	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$					-0.25	mA
IIH	High Level Input Current	V _{CC} = Max,			25	μA		
h	Maximum Input Current	$V_{CC} = Max, V_I = 5.5V$					1	mA
VOL	Low Level Output Voltage	$V_{CC} = Min$ $I_{OL} = 8 mA$					0.5	v
VOH	High Level Output Voltage	$V_{CC} = Min$ $I_{OH} = -2 mA$ MIL			2.4		v	
			$I_{OH} = -3.2 \text{ mA}$	COM	2.4			, v
los	Output Short-Circuit Current (Note 4)	$V_{CC} = 5V, V_O = 0V$			-30		-130	mA
lcc	Supply Current	V _{CC} = Max, Outputs Open				60	100	mA

Note 1: Absolute maximum ratings are those values beyond which the device may be permanently damaged. Proper operation is not guaranteed outside the specified recommended operating conditions.

Note 2: Some device pins may be raised above these limits during programming operations according to the applicable specification.

Note 3: These are absolute voltages with respect to the ground pin on the device and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

Note 4: To avoid invalid readings in other parameter tests, it is preferable to conduct the I_{OS} test last. To minimize internal heating, only one output should be shorted at a time with maximum duration of 1.0 second each. Prolonged shorting of a high output may raise the chip temperature above normal and permanent damage may result.

Switching Characteristics Over Recommended Operating Conditions

Symbol	Parameter	Test Conditions	Military			Commercial			Units
	, arameter		Min	Тур	Max	Min	Тур	Max	onito
T _{pd}	Input to Output	C _L = 50 pF		15	30		15	25	ns

Test Load

Test Waveform

Notes:

 $V_{T} = 1.5V$

CL includes probe and jig capacitance.

In the examples above, the phase relationships between inputs and outputs have been chosen arbitrarily.

Schematic of Inputs and Outputs

LS451A

