National Semiconductor

DM54S74/DM74S74 Dual Positive-Edge-Triggered D Flip-Flops with Preset, Clear, and Complementary Outputs

General Description

This device contains two independent positive-edge-triggered D flip-flops with complementary outputs. The information on the D input is accepted by the flip-flops on the positive going edge of the clock pulse. The triggering occurs at a voltage level and is not directly related to the transition time of the rising edge of the clock. The data on the D input may be changed while the clock is low or high without affecting the outputs as long as setup and hold times are not violated. A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.

Connection Diagram

Order Number DM54S74J, DM54S74W, DM74S74M or DM74S74N See NS Package Number J14A, M14A, N14A or W14B

Function Table

Inputs				Outputs		
PR	CLR	CLK	D	Q	Q	
L	н	х	х	н	L	
н	L	Х	X	L	н	
L	L	Х	X	Н*	H*	
н	н	↑	н	н	L	
н	н	1	L	L	н	
н	н	L	x	Q ₀	\overline{Q}_0	

H = High Logic Level

X = Either Low or High Logic Level

L = Low Logic Level

↑ = Positive-going Transition

= This configuration is nonstable; that is, it will not persist when either the preset and/or clear inputs return to its inactive (high) level.

 $Q_0 =$ The output logic level of Q before the indicated input conditions were established.

3-33

S74

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	5.5V
Operating Free Air Temperature Range	
DM54S	-55°C to +125°C
DM74S	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter		DM54S74			DM74S74			Units
Symbol			Min	Nom	Max	Min	Nom	Max	Units
V _{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	v
VIH	High Level Inpu	ut Voltage	2			2			v
VIL	Low Level Inpu	it Voltage			0.8			0.8	v
IOH	High Level Out	put Current			-1			-1	mA
IOL	Low Level Out	out Current			20			20	mA
fclk	Clock Frequency (Note 2)		0	110	75	0	110	75	MHz
fCLK	Clock Frequen	cy (Note 3)	0	95	65	0	95	65	MHz
tw Pulse Widt (Note 2)	Pulse Width (Note 2)	Clock High	6			6			- ns
		Clock Low	7.3			7.3			
		Clear Low	7			7			
		Preset Low	7			7			
tw	Pulse Width (Note 3)	Clock High	8			8			- ns
		Clock Low	9			9			
		Clear Low	9			9			
		Preset Low	9			9			
tsu	Setup Time (Notes 1 & 2)		3↑			3↑			ns
tsu	Setup Time (Notes 1 & 3)		3↑			3↑			ns
t _H	Input Hold Time (Notes 1 & 2)		2↑			2↑			ns
tн	Input Hold Time (Notes 1 & 3)		2↑			2↑			ns
T _A	Free Air Operating Temperature		-55		125	0		70	°C

Note 1: The symbol (1) indicates the rising edge at the clock pulse is used for reference.

Note 2: C_L = 15 pF, R_L = 280 Ω , T_A = 25°C and V_{CC} = 5V.

Note 3: C_L = 50 pF, R_L = 280 Ω , T_A = 25°C and V_{CC} = 5V.

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min$, $I_{I} = -18 mA$				-1.2	V
V _{OH}	High Level Output		DM54	2.5	3.4		v
Voltage	Voltage		DM74	2.7	3.4		
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OL} = Max$ $V_{IH} = Min, V_{IL} = Max$				0.5	v
կ	Input Current @ Max Input Voltage	$V_{CC} = Max, V_1 = 5.5V$				1	mA
I _{IH} High Level Input Current	· ·	V _{CC} = Max	D			50	
	V ₁ = 2.7V	Clear			150	μΑ	
		Preset			100		
			Clock			100] ·
I _{IL} Low Level Input Current			D			-2	- mA
			Clear			-6	
			Preset			-4	
			Clock			-4	
los	Short Circuit Output Current	V _{CC} = Max (Note 2)	DM54	-40		-100	- mA
			DM74	-40		- 100	
Icc	Supply Current	V _{CC} = Max, (Note 3)			30	50	mA

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: With all outputs open, I_{CC} is measured with the Q and Q outputs high in turn. At the time of measurement, the clock is grounded.

Note 4: Clear is tested with preset high and preset is tested with clear high.

Symbol	Parameter	From (Input) To (Output)	$R_L = 280\Omega$				ļ
			C _L = 15 pF		C _L = 50 pF		Units
			Min	Max	Min	Max	
fmax	Maximum Clock Frequency		75		65		MHz
t _{P'.H}	Propagation Delay Time Low to High Level Output	Preset to Q		6		9	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	Clear to Q		6		9	ns
t _{PHL}	Propagation Delay Time High to Low Level Output (Clock High)	Preset to Q		13.5		17	ns
t _{PHL}	Propagation Delay Time High to Low Level Output (Clock Low)	Preset to Q		8		14	ns
t _{PHL}	Propagation Delay Time High to Low Level Output (Clock High)	Clear to Q		13.5		16	ns
t _{PHL}	Propagation Delay Time High to Low Level Output (Clock Low)	Clear to Q		8		13	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	Clock to Q or \overline{Q}		9		12	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Clock to Q or Q		9		14	ns